High Performance Compact Inverters

FRENIC-Multi Series

With advanced technology built in, thes

Gentler on the environment

Complies with European regulations that limit the use of specific hazardous substances (ROHS). These inverters are gente on the environment. Use of 6 hazardous substances is ilitite. (Products
manufactured beginning in the autumn of 2005 will manufactured beginning in the autumn of 2005 will
comply with European regulations (except for interior soldering in the power modue) <Six Hazardous Substances>
Lead, Mercury, Cadmium, Hexavalent Chromium, Polybrominated biphenyl (PBB), Polybrominated diphenyl ether (PBDE)
<About RoHS>
The Directive 2002/95/EC, promulgated by the European Pariament and European Council, iinits the use of specific hazardous substances included in electrical and electronic devices.

Long-life design! The design life of each limited life has been extended to 10 years. This helps to extend the mointenance cycle

Limited Life Component	Serice Life
Main circuit capacitors	10 years
Electrolytic capacitors on the printed circuit board	10 years
Cooling fan	10 years

Noise is reduced by the built-in EMC filter. Use of a built-in EMC filter that reduces noise generated by the inverter makes it possible to reduce the effect on peripheral equipment.

-Standard Series

Models with built-in EMC filter
Models with built-in PG feedback card Models with built-in RS-485 communications card Models for synchronous motors
erters can be used for multiple purposes!

51/10

The highest standards of control and performance in its class .

Compatible with PG feedback control

Tripless deceleration by automatic deceleration control The inverter controls the energy level generated and so deceleration stop can be accomplished without tripping due to overvoltage.

Equipped with the highest level CPU for its class! The highest level CPU of any inverter is used. Computation and processing capacity is doubled over the previous

- CPU speed comparison

Optimum for the operations specific to vertical and horizontal conveyance.
Hit-and-stop control is realized more easily! Impacts are detected mechanically and not only can the deceleration stop, but switching from torque limitation to deceeleration stop, but switching from torque limitation to
current limitation and generating a holding torque (hit-andstop control) can be selected, making it easy to adjust brake $\square \square \quad \begin{aligned} & \text { application and } \\ & \text { release timing. }\end{aligned}$

Inclusion of a brake signal makes it even more convenient.

- At brake release time

After the motor operates, torque generation is detected and Aignals are output.
Brake application that matches the timing can be done and so mechanical brake wear is reduced.

Limit operations can be selected to match your equipment! Inverters are equipped with two limit operations, "torque limitation" and "current limitation," so either can be selected to match the equipment you are using the inverter with.
Torque limitation - Torque limitation

In order to protect mechanical systems, this function accurately limits the torque generated by the motor
(Instantaneous torque cannot be limited.)

- Current limitation

This function limits the current flowing to the motor to protect the motor thermally or to provide rough load
limitation. (Instantaneous current cannot be limited. Au tuning is not required.)

The life information on each of the inverter's limited life components is displayed.

Construction is simple, enabling quick removal of the top cover and making it easy to replace the cooling fan. (5.5 kW or higher models)

Cooling fan replacement procedure

The cover on top of the inverter can be quickly removed.

Simply disconnect the power connector and replace the cooling fan.

Information that contributes to equipment maintenance is displayed!
In addition to inverter maintenance information, data that also take equipment maintenance into consideration are displayed.

Item	Purpose
Motor cumulative running time (hr)	The actual cumulative running time of the equipment (motor) the inverter is being used with is calculated. <Example of use> If the inverter is used to control a fan, this information is an indication of the timing for replacing the belt that is used on the pulleys.
Number of starts (times)	The number of times the inverter starts and stops can be counted. <Example of use The number of equipment starts and stops is recorded, and so this information can be used as a guideline for parts replacement timing in equipment in which starting and stopping puts a heavy load on the machinery.
The alarm history records the latest four incidents.	
Detailed information can be checked for the four most recent	
alarms.	

Simple operation, simple wiring

A removable keypad is standard equipment.

The keypad can be easily removed and reset, making remote operation possible. If the back cover packed with the inverter is installed and a LAN cable is used, the keypad can be easily mounted on the equipment's control panel.

Aremovable interface board is used.

The interface board can be used as a terminal block for control signals. Since it is removable, wiring operations are simple.

All types and variations of interface board are available
 as options (available soon).
Optional interface boards have the same dimensions as the standard interface board supplied with the inverter, so it is possible to meet optional specifications using the same installation space as with standard specification models.

A multifunction keypad which enables a wide variety of operations is avaliable.

A multi-function keypad is available as an option. This keypad features a large 7-segment LED with five digits and large back-lighted liquid crystal panel. Its view-ability is high, and guidance is displayed on the liquid crystal panel, therefore operations can be conducted simply. (A
 copy function is included.)
Inverter support loader software is available. (On sale soon)
Windows compatible loader software is available to simplify the setting and management of function codes.

Simulated failure enables peripheral device operation checks.

The inverter has the function for outputting dummy alarm signals, enabling simple checking of sequence operations of peripheral devices from the control panel where the inverter is used.

Side-by-side mounting saves space!

If your control panel is designed to use multiple inverters, these inverters make it possible to save space through their horizontal side-by-side installation. (3.7kW or smaller models)

(The 3-phase 200V, 0.75 k
W model is shown W model is shown here.)

Resistors for suppressing inrush current are built in, making it possible to reduce the capacity of peripheral equipment.
When FRENIC-Multi Series (including FRENIC-Mini Series, FRENIC-Eco Series and 11 Series) is used, the built-in resistor suppresses the inrush current generated when the motor starts. Therefore, it is possible to select peripheral equipment with lower capacity when designing your system than the equipment needed for direct connection to the motor.
Outside panel cooling is also made possible using the mounting adapter for external' cooling (option).

The mounting adapter for external cooling (option) can be installed easily as an outside panel cooling system. This function is standard on 5.5 kW or higher modeis.

First time in First industry

New system for more energy-efficient operation!

Previous energy saving operation functions worked only to control the motor's loss to keep it at a minimum in accordance with the load condition. In the newly developed FRENIC-Multi Series, the focus has been switched away from the motor alone to both the motor and the inverter as electrical products. As a result, we incorporated a new control system (optimum and minimum power control) that minimizes the power consumed by the inverter itself (inverter loss) and the loss of the motor.

In the case where a fan is not being run by the inverter but is turning free, the fan's speed is checked, regardless of its rotational direction, and operation of the fan is picked up to start the fan smoothly. This function is convenient in such cases as when switching instantaneously from commercial power supply to the inverter.

Equipped with a full range of PID control functions!

Differential alarm and absolute value alarm outputs have been added for PID adjusters which carry out process controls such as temperature, pressure and flow volume control. In addition, an anti-reset windup function to prevent PID control overshoot and other PID control functions which can be adjusted easily through PID output limiter, integral hold/reset signals are provided. The PID output limiter and integral hold/reset signals can also be used in cases where the inverter is used for dancer control.

Operating signal trouble is avoided by the command loss detection function!

If frequency signals connected to the inverter (0 to $10 \mathrm{~V}, 4$ to 20 mA , Multi-speed signals, communications, etc.) are interrupted, the missing frequency commands are detected as a "command loss." Further, the frequency that is output when command loss occurs can be set in advance, so operation can be continued even in cases where the frequency signal lines are cut due to mechanical vibrations of the equipment, etc.

An overload stop function protectis equipment from over.operation.)

If the load on equipment suddenly becomes great while controlled by the inverter, the inverter can be switched to deceleration stop or to coast-to-stop operation to prevent damage to the equipment.

Continuous equipment operation with overload avoidance contro!!

If foreign matter gets wrapped around a fan or pulley and the load increases, resulting in a sudden temperature rise in the inverter or an abnormal rise in the ambient temperature, etc. and the inverter becomes overloaded, it reduces the motor's speed, reducing the load and continuing operation.

RS-485 communications (connector) is standard!

A connector (RJ-45) that is compatible with RS-485 communications is standard equipment (1 port, also used for keypad communications), so the inverter can be connected easily using a LAN cable (10BASE).

Complies with optional networks using option cards. Availabe soon)
Installation of special interface cards (option) makes it possible to connect to the following networks.

Wiring is easy with the RS-485 communications card (optional!!

The RS-485 communications card is also available as an option. When it is installed, you can add a branch connection that is separate from the communications port provided as standard equipment (RJ-45 connector), and have two communications ports.

Important Points

(1) A separate branch adaptor is not required because of two ports.
(2) The built-in terminal ting resistor makes provision of a separate terminal ting resistor unnecessary.

Example of connection configuration with peripheral equipment

- Complies with standards
- Sink/Source switchable
- Wide voltage range
- The multi-function keypad displays multiple languages (Japanese, English, German, French, Spanish, Italian, Chinese, Korean).
* There are two types of multi-function keypad.

[^0]
Variation

Model List

[Semi-standard specification (available soon)]

- The inverter series will expand its variation range by adding the PG feedback card built-in type, EMC filter built-in type, RS-485 card built-in types, and the models applicable to the synchronous motors to the product lineups as semi-standard specifications

How to read the inverter model

Caution The contents of this catalog are provided to help you select the product model that is best for you. Before actual use, be sure to read the User's Manual thoroughly to assure correct operation.

Specifications

-Standard specifications
 ■Three-phase 200V series

Item			Specifications										
Type (FRNपロपE1S-2A)			0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
Applicable motor rating [kW] (*1)			0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
	Rated capacity [kVA] (*2)		0.30	0.57	1.1	1.9	3.0	4.1	6.4	9.5	12	17	22
	Rated voltage [V] (*3)		Three-phase 200V to 240 V (with AVR function)										
	Rated current [A] (*4)		$\begin{gathered} \hline 0.8 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \end{gathered}$	$\begin{gathered} \hline 3.0 \\ (2.5) \end{gathered}$	$\begin{gathered} \hline 5.0 \\ (4.2) \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (7.0) \end{gathered}$	$\begin{gathered} 11 \\ (10) \end{gathered}$	$\begin{gathered} 17 \\ (16.5) \end{gathered}$	$\begin{gathered} 25 \\ (23.5) \end{gathered}$	$\begin{gathered} 33 \\ (31) \end{gathered}$	47 (44)	60 (57)
	Overload capability		150% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$										
	Rated frequency [Hz]		$50,60 \mathrm{~Hz}$										
	Phases, voltage, frequency		Three-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$										
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance (*8): 2% or less) Frequency: +5 to -5%										
	Rated current [A] (*9)	(with DCR)	0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6
		(without DCR)	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.1
	Required power supply capacity [kVA] (*5)		0.2	0.3	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)		150		100		70	40×4		20			
	Torque [\%] (*7)		-						150				
	DC injection braking		Starting frequency: 0.1 to 60.0 Hz , Braking time: 0.0 to 30.0 s, Braking level: 0 to 100% of rated current										
	Braking transistor		Built-in										
Applicable safety standards			UL508C, C22.2No.14, EN50178:1997										
Enclosure (IEC60529)			IP20, UL open type										
Cooling method			Natural cooling				Fan cooling						
Weight / Mass [kg]			0.6	0.6	0.7	0.8	1.7	1.7	2.3	3.4	3.6	6.1	7.1

Three-phase 400V series

		Specifications								
Type (FRNDपロE1S-4A)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
Applicable motor rating [kW$]$ (*1)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
	Rated capacity [kVA] (*2)	1.1	1.9	2.8	4.1	6.8	9.9	13	18	22
	Rated voltage [V] (*3)	Three-phase 380V to 480V (with AVR function)								
	Rated current [A] (*4)	1.5	2.5	3.7	5.5	9.0	13	18	24	30
	Overload capability	150\% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$								
	Rated frequency [Hz]	$50,60 \mathrm{~Hz}$								
	Phases, voltage, frequency	Three-phase, 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$								
	Voltage/frequency variations	Voltage: +10 to -15% (Voltage unbalance (*8): 2% or less) Frequency: +5 to -5%								
	Rated current $[A]$ (*9)	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8
		1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8
	Required power supply capacity [kVA] (*5)	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)	100		70	40		20			
	Torque [\%] (*7)	150								
	DC injection braking	Starting frequency: 0.1 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100% of rated current								
	Braking transistor	Built-in								
Applicable safety standards		UL508C, C22.2No.14, EN50178:1997								
Enclosure (IEC60529)		IP20, UL open type								
Cooling method		Natural cooling		Fan cooling						
Weight / Mass [kg]		1.1	1.2	1.7	1.7	2.3	3.4	3.6	6.1	7.1

(*1) Fuji's 4-pole standard motor
(*2) Rated capacity is calculated by assuming the output rated voltage as 220 V for three-phase 200 V series and 440 V for three-phase 400 V series.
(*3) Output voltage cannot exceed the power supply voltage
(*4) When setting the carrier frequency (F26) to 3 kHz or less. Use the current () or below when the carrier frequency setting is higher than 4 kHz and continuously operating at 100%.
(*5) Obtained when a DC REACTOR is used.
$\left.{ }^{(*} 6\right)$ Average braking torque obtained when reducing the speed from 60 Hz with AVR control OFF (Varies with the efficiency of the motor.)
(*7) Average braking torque obtained by use of external braking resistor (standard type available as option)
(*8) Voltage unbalance $[\%]=\frac{\text { Max voltage [V] - Min voltage [V] }}{\text { Three-phase average voltage [V] }} \times 67$ (IEC 61800-3)
If this value is 2 to 3%, use AC REACTOR (ACR: option).
$\left({ }^{*} 9\right)$ The value is calculated on assumption that the inverter is connected with a power supply capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%.

■Single-phase 200 V series

(*1) Fuji's 4-pole standard motor
(*2) Rated capacity is calculated by assuming the output rated voltage as 220 V for 200 V series
(*2) Rated capacity is calculated by assuming the output rate
(*3) Output voltage cannot exceed the power supply voltage
$\left({ }^{*} 3\right)$ Output voltage cannot exceed the power supply voltage.
$\left({ }^{*} 4\right)$ When setting the carrier frequency (F26) to 3 kHz or less. Use the current () or below when the carrier frequency setting is higher than 4 kHz and continuously operating at 100%.
(*4) When setting the carrier frequency (F26)
$(* 5)$ Obtained when a DC REACTOR is used.
$\left.{ }^{(}{ }^{*} 6\right)$ Average braking torque when reducing the speed from 60 Hz with AVR control OFF (Varies with the efficiency of the motor.)
(*6) Average braking torque when reducing the speed from 60 Hz with AVR control OFF (Varies with the efrs
(*7) Average braking torque obtained by use of external braking resistor (standard type available as option)
(*7) Average braking torque obtained by use of external braking resistor (standard type available as option)
$\left({ }^{*} 8\right)$ The value is calculated on assumption that the inverter is connected with a power supply capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%.

Specifications

OCommon specifications

External Dimensions

Olnverter main body (standard)

Power supply voltage	Inverter type	Dimension (mm)		
		D	D1	D2
$\left.\begin{array}{\|c\|} \hline \text { Three-phase } \\ 200 \mathrm{~V} \end{array} \right\rvert\,$	FRN0.1E1S-2A	92	82	
	FRN0.2E1S-2A			10
	FRN0.4E1S-2A	107		25
	FRN0.75E1S-2A	132		50
Single-phase200 V	FRN0.1E1S-7A	112	102	
	FRN0.2E1S-7A			10
	FRN0.4E1S-7A	127		25
	FRN0.75E1S-7A	152		50

Power supplyvoltage	Inverter type	Dimension (mm)		
		D	D1	D2
Three-phase	FRN1.5E1S-2A	150	86	64
200 V	FRN2.2E1S-2A			
$\begin{gathered} \text { Three-phase } \\ 400 \mathrm{~V} \end{gathered}$	FRN1.5E1S-4A			
	FRN2.2E1S-4A			
Single-phase 200V	FRN1.5E1S-7A	160	96	

Power supply voltage	Inverter type
Three-phase 200V	FRN3.7E1S-2A
Three-phase 400V	FRN3.7E1S-4A
Signal-phase 200V	FRN2.2E1S-7A

Olnverter main body (standard)

Power supply voltage	Inverter type
Three-phase 200V	FRN5.5E1S-2A
	FRN7.5E1S-2A
Three-phase 400 V	FRN5.5E1S-4A
	FRN7.5E1S-4A

OKeypad

Keypad Operations

Keypad switches and functions

LED monitor

When the motor is running or stopped:
The monitor displays speeds, such as output frequency, set frequency, motor speed and load shaft speed, output voltage, output current, and power consumption.

Alarm mode:

The monitor shows the alarm description with a fault code.

Program/Reset key

Used to change the mode.
Programming mode:
Used to shift the digit (cursor movement) to set data.

Alarm mode:

Resets trip prevention mode.

Unit display

The unit of the data displayed at the LED monitor is indicated. Use the key to switch the displayed data.

Operation mode display

During keypad operation:

or \square (keypad operation), the green KEYPAD CONTROL LED lights up.

Run key

While the motor is stopped:

Used to start the operation.
This key is invalid if the function code F B D (operation by external signals) is setto प—I.
During operation: The green RUN LED lights up.

Function/Data select key

Used to change the LED monitor and to store the function code and data.

Up/Down keys

During operation: Used to increase or decrease the frequency or motor speed.
In data setting: Used to indicate the function code number or to change data set value.

Stop Key

Used to stop the operation.
During operation:
This key is invalid if the function code 5 (operation by external signals) is set to $\square \square$.
The inverter stops when the function code 69 is set to \square 有 \square.

Monitor display and key operation The keypad modes are classified into the following 3 modes.

Operation mode Monitor, keys			Programming mode		Running mode		Alarm mode
			STOP	RUN	STOP	RUN	
$\begin{aligned} & \text { L } \\ & \text { OU } \\ & \text { D } \\ & \text { D } \end{aligned}$		Function	Displays the function code and data.		Displays the output frequency, set frequency, loaded motor speed, power consumption, output current, and output voltage.		Displays the alarm description and alarm history.
		Display			Blinking	Lighting	Blinking/Lighting
	$\left[\begin{array}{c} \square \mathrm{Hz} \\ {[\mathrm{rlmin}} \\ \square_{\mathrm{m}}^{\mathrm{A}} \\ -\mathrm{mmin} \\ \square \mathrm{~kW} \end{array}\right] \text { PRG.MODE }$	Function	Indicates that the program mode is selected.		Displays the units of frequency, output current, power consumption, and rotation speed.		None
		Display		mode on			OFF
	KEYPAD CONTROI	Function	Operation selection (keypad operation/terminal operation) is displayed.				
		Display	Lit in keypad operation mode				
		Function	Indicies absence ofoperaion cormmands.	Indicies presence ofopeation commands.	Indicates absence of operation commands.	Indicates presence of operation commands.	Indicates that the operation is trip-stopped.
	$\square \mathrm{RUN}$	Display	\square RUN unlit	\square RUN lit	\square RUN unlit	\square RUN lit	If an alarm occurs during operation, the lamp is unlit during keypad operation and lit during terminal block operation.
$\underset{\underset{\sim}{0}}{n}$	(PRG)	Function	Switches to running mode		Switches to programming mode		Releases the trip and switches to stop mode or running mode.
	(Funct	Function	Determines the function code, stores and updates data.		Switches the LED monitor display.		Displays the operation information.
		Function	Increases/decreases the function code and data.		Increases/decreases the frequency, motor speed and other settings.		Displays the alarm history.
	N	Function	Invalid		Starts running (switches to running mode (RUN)).	Invalid	Invalid
	STOP	Function	Invalid	Deceleration stop (switches to programming mode (STOP)).	Invalid	Deceleration stop (switches to running mode (STOP)).	Invalid

This keypad supports the full menu mode that allows you to set or display the following information. Indication and setting change of changed function code, drive monitor, I/O check, maintenance information, and alarm information. For the actual operation methods, refer to the FRENIC-Multi Instruction Manual or User's Manual.

Basic Wiring Diagram

Wiring diagram

The following diagram is for reference only. For detailed wiring diagrams, refer to the instruction manual.
Keypad operation

Operation by external signal inputs

■Run/Stop operation and frequency setting through external signals [Wiring procedure]
(1) Wire both the inverter main power circuit and control circuit.
(2) Set i (external signal) at function code $F O 2$. Next, set i (voltage input (terminal 12) (0 to +10 V DC)), ᄅ (current input (terminal C1) (+4 to $20 \mathrm{mADC})$), or other value at function code $F \Omega i$.

[Operation method]

(1) Run/Stop: Operate the inverter across terminals FDW and CM shortcircuited, and stop with open terminals.
(2) Frequency setting: Voltage input (0 to $+10 \mathrm{~V} D$), current input (+4 to 20mA DC)
Note1: When connecting a DC REACTOR (DCR option), remove the jumper bar from across the terminals $[P 1]$ and $[P(+)]$.
Note2: Install a recommended molded-case circuit breaker (MCCB) or an earth-leakage circuit-breaker (ELCB) (with an overcurrent protection function) in the primary circuit of the inverter to protect wiring. At this time, ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
Note3: Install a magnetic contactor (MC) for each inverter to separate the inverter from the power supply, apart from the MCCB or ELCB, when necessary.
Connect a surge killer in parallel when installing a coil such as the MC or solenoid near the inverter.
Note4: (THR) function can be used by assigning code "9" (external alarm) to any of the terminals X1 to X5, FWD or REV (function code; E01 to E05, E98, or E99).
Note5: Frequency can be set by connecting a frequency-setting device (external potentiometer) between the terminals 11, 12 and 13 instead of inputting a voltage signal (0 to +10 V DC, 0 to +5 V DC or +1 to +5 V DC) between the terminals 12 and 11 .
Note 6: For the control signal wires, use shielded or twisted wires. Ground the shielded wires. To prevent malfunction due to noise, keep the control circuit wiring away from the main circuit wiring as far as possible (recommended: 10 cm or more). Never install them in the same wire duct.
When crossing the control circuit wiring with the main circuit wiring, set them at right angles.

Terminal Functions

Terminal Functions

	Symbol	Terminal name	Functions	Remark	Related function code
	L1/R,L2/S,L3/T	Power input	Connect a three-phase power supply.		
	$\mathbf{U}, \mathbf{V}, \mathbf{W}$	Inverter output	Connect a three-phase motor.		
	P1, P (+)	For DC REACTOR	Connect the DC reactor (DCR).		
	P (+), DB	For braking resistor	Connect the braking resistor (option).		
	$\mathrm{P}(+), \mathrm{N}(-)$	For DC bus connection	Used for DC bus connection.		
	\bigcirc G	Grounding	Terminal for inverter chassis (case) and motor grounding	Two terminals are provided.	
	13	Potentiometer power supply	Used for frequency setting device power supply (variable resistance: 1 to $5 \mathrm{k} \Omega$) (10V DC 10mA DC max.)	Connect the potentiometer with higher than $1 / 2 \mathrm{~W}$.	
	12	Analog setting voltage input	Used as a frequency setting voltage input. 0 to $\pm 10 \mathrm{~V} \mathrm{DC} / 0$ to 100% (0 to $\pm 5 \mathrm{~V}$ DC/0 to 100\%)	Input impedance: $22 \mathrm{k} \Omega$ Maximum input: +15V D	
		(Inverse operation)	+10 to OV DC/O to $\pm 100 \%$	However, the current larger than	C35
		(PID control)	Used for setting signal (PID process command value) or feedback signal.	+20 mADC is handled as +20 mA	
		(Frequency aux. setting)	Used as additional auxiliary setting to various frequency settings.		
	C1	Analog setting current input	Used as a frequency setting current input. 4 to 20mA DC/0 to 100\%	Input impedance: 250Ω Maximum input: 30 mA DC	$\begin{aligned} & \text { F18 } \\ & \text { C37 } \end{aligned}$
		(Inverse operation)	20 to 4mA DC/0 to 100\%	However, the voliage higher than	C39
		(PID control)	Used for setting signal (PID process command value) or feedback signal.	$\pm 10 \mathrm{~V} \mathrm{DC}$ is handled as $\pm 0 \mathrm{~V} \mathrm{DC}$.	E62
		(Frequency aux. setting)	Used as additional auxiliary setting to various frequency settings.		
	(V2)		Used as a frequency setting voltage input. 0 to $+10 \mathrm{~V} \mathrm{DC} / 0$ to $100 \%(0$ to $+5 \mathrm{~V}$ DC/O to 100% +10 to $0 V$ DC/O to 100%		
			Common terminal for frequency setting signals (13, 12, C1, FM)		
			The following functions can be set at terminals X1 to X5, FWD and REV for signal input.		
			- Sink and source are changeable using the built-in sliding switch.		
			The motor runs in the forward direction upon ON across (FWD) and CM. The motor decelerates and stops upon OFF.	This function can be set only for the terminals FWD and REV.	$\begin{aligned} & \mathrm{c} 05 \text { to } \\ & \mathrm{C} 19 \end{aligned}$
	(SS1) (SS2) (SS4) (SS8)	Multistep freq. selection	16 -step operation can be conducted with ON/OFF signals at (S1) to (S8).		
			(SS2) - - ON ON - - ON ON - - On On - - On On		
	(PTC)	(PTC thermistor)			
	11	Analog common			
		Digital input 1			E01
	X2	Digital input 2			E02
	X3	Digital input 3		Voltage level: 2 V	E03
	X4	Digital input 4		Allowable leakage current: Smal	E04
	X5	Digital input 5			E05
	FWD	Forward operation command		lage. 22 to 27 V	E98
	REV	Reverse operation command			E99
	(FWD)	Forward operation command			
	(REV)	Reverse operation command			
			Stal iput		
			(SS1) - On On On On On - On - On - On - On		
			(SS4) - - - On On On On - - - On On On On		
	(RT1)	Acceleration time selection command	ON across (RT1) and CM: The acceleration time 2 setting is available.		$\begin{aligned} & \text { E10, E11 } \\ & \text { F07, F08 } \end{aligned}$
	(HLD)	3-wire operation stop command	Used for 3-wire operation. ON across (HLD) and CM: The inverter self-holds FWD or REV signal. OFF across (HLD) and CM: The inverter releases self-holding.		
	(BX)	Coast-to-stop command	ON across (BX) and CM: The inverter output is shut off immediately and the motor coasts to a sop.	No alarm signal will be output.	
	(RST)	Alarm (error) reset	ON across (RST) and CM: Faults are reset.	Alarm reset signal widh: 0.1 (s) or more	
	(THR)	Trip command (External fault)	OFF across (THR) and CM: The inverter output is shut off immediately and the motor coasts-t--stop.	Alarm signal $0 \boldsymbol{H}$? will be output.	
	(Hz2/Hz1)	Freq set $2 /$ Freq set 1	ON across (Hz2/Hz1) and CM: Freq set 2 is effective.		F01, F30
	(M2/M1)	Motor2/Motor1	OFF across (M2/M1) and CM: The motor 1 setting is available.		A01 to A 46
					P01 to 099
	(DCBRK)	DC braking command	ON across (DCBRK) and CM: Starts DC braking action.		F20 to F 22
	(TL2/TLi)	Torque limit 2/Torque limit 1	ON across (TL2/TL1) and CM: The torque limit 2 setting is available.		E16, E17
			OFF across (TL2/TL1) and CM: The torque limit 1 setting is available. The output frequency rises while the circuit across (UP) and CM is connected.		F40, F41
	(UP)	UP command			F01, C30
	(DOWN)	DOWN command	The output frequency drops while the circuit across (DOWN) and CM is connected.		J02
	(WE-KP)	Write enable for KEYPAD (Changing data is available.)	The function code data can be changed from the keypad only when (WE-KP) is ON .		F00
	(Hz/PiD)	PID cancel	PID control can be canceled when the circuit across (HzIPID) and CMis is connected. (Operation proceeds according to the selected frequency setting method such as the multi-step frequency, keypad and analog input.)		$\begin{aligned} & \text { jo1 to Job } \\ & \text { J10 to J19 } \end{aligned}$
	(ivS)	İverse mode changeover	The frequency setting or PID control output signal (frequency setting) action mode switches between normal and inverse actions when the circuit across (IVS) and CM is connected.		C50, j 01
	(LE)	Link enable	Operation proceeds according to command sent via 485 communcation or field bus (option) when the circuit across (LE) and CM are connected.		H30, y98
	(U-DI)	Universal DI	An arbitrary digital input signal is transmitted to the host controller.		
	(STM)	Starting characteristic selection	ON across (STM) and CM: Starting at the pick-up frequency becomes valid.		H17, H 09
	(STOP)	Forcible stop	OFFF across (STOP) and CM: The inverter is forcibly stopped in the special deceleration time.		H56
	(PID-RST)	PID differentiation I integration reset	ON across (PID-RST) and CM: Resets differentiation and integration values of PID.		j01 to J06
	(PID-HLD)	PID integral hold	ON across (PID-HLD) and CM: Holds integration value of PID.		J10 to J19
	(JOG)	Jogging operation	ON across (JOG) and CM: The operation node enters jogging mode and frequency setting switches to jogging frequency and acceleration and deceleration time for jogging operation.		$\begin{aligned} & \mathrm{C} 20 \\ & \mathrm{H} 54 \end{aligned}$
	PLC	PLC terminal	Connect to PLC output signal power supply. Common for 24V power.	+24 V (22 to 27 V) 50 mA max	
	CM	Digital common	Common terminal for digital input signal	Isolated from terminals 11 and CMY. Two terminals are provided.	

Terminal Functions

$\begin{aligned} & \hline \frac{\overline{0}}{\omega} \\ & \frac{i n}{2} \end{aligned}$	Symbol	Terminal name	Functions	Remark	$\begin{array}{\|c} \hline \begin{array}{c} \text { Related } \\ \text { function } \\ \text { code } \end{array} \\ \hline \end{array}$
	FM (FMA)	Analog monitor	A monitor signal of analog DC voltage between 0 to +10 V DC) can be output for the item selected from the following: - Output frequency 1 (before slip compensation) • Output frequency 2 (after slip compensation) • Output current • Output voltage • Output torque • Load factor. Power consumption • PID feedback value (PV) • DC link circuit voltage • Universal AO. • Motor output • Analog output test. • PID command (SV) • PID output (MV)	Connectable impedance (Minimum impedance: 5 kW In the (0 to +10 V DC) In case of voltage output, up to two analog voltmeters (0 to 10 V DC, input impedance: 10kW) can be connected. Gain adjustment range: 0 to 300%	$\begin{aligned} & \text { F29 to } \\ & \text { F31 } \end{aligned}$
	(FMP)	Pulse monitor	One of the following items can be output in a pulse frequency. - Output frequency 1 (before slip compensation) • Output frequency 2 (after slip compensation) • Output current • Output voltage • Output torque • Load factor.o Power consumption • PID feedback value (PV) • DC link circuit voltage • Universal AO • Motor output • Analog output test • PID command (SV) • PID output (MV)	Up to two analog voltmeters (0 to10V DC, input impedance: $10 \mathrm{k} \Omega$) can be connected. (Driven at average voltage)	$\begin{aligned} & \text { F29, } \\ & \text { F31, } \\ & \text { F32 } \end{aligned}$
	(PLC)	Transistor output power	Power supply for a transistor output load. (24V DC 50mA DC Max)	- Short circuit across terminals CM and CMY to use - Same terminal as digital input PLC terminal	E20
	Y1	Transistor output 1	The following functions can be set at terminals Y 1 or Y 2 for signal output. - The setting of "short circuit upon active signal output" or "open upon active signal output" is possible. - Sink/source support (switching unnecessary)	Max. voltage: 27V DC Max. current: 50 mA Leak current: 0.1 mA max. ON volitage: within 2 V (at 50 mA)	$\begin{array}{\|l\|l\|} \hline \text { E21 } \\ \hline \text { E22 } \\ \hline \end{array}$
	Y2	Transistor output 2			
	(RUN)	Inverter running	An ON signal is output when the inverter runs at higher than the starting frequency.		
	(RUN2)	Inverter output on	A signal is issued when the inverter runs at smaller than the starting frequency or when DC braking is in action.		
	(FAR)	Speed/freq- arrival	An active signal is issued when the output frequency reaches the set frequency.	Detection width: 0 to $10.0[\mathrm{~Hz}]$	E30
	(FDT)	Speed/freq detection	An ON signal is output at output frequencies above a preset detection level. The signal is deactivated if the output frequency falls below the detection level.	Operation level: 0.0 to $400.0[\mathrm{~Hz}]$ Hysteresis width: 0.0 to $400.0[\mathrm{~Hz}]$	$\begin{aligned} & \text { E31 } \\ & \text { E32 } \end{aligned}$
	(LV)	Undervoltage detection	The signal is output when the inverter stops because of undervoltage.		
	(B/D)	Torque polarity detection	The ON signal is output when the inverter is running in drive mode and the OFF signal is output in the braking mode or stopped state.		
	(IOL)	Inverter output linit (linit on current)	The signal is output when the inverter is limiting the current.		F43, F44
	(IPF)	Auto-restarting	The signal is output during auto restart operation (after momentary power failue and undil completion of restart).		F14
	(OL)	Overload early warning (motor)	The signal is output when the electronic thermal relay value is higher than the preset alarm level.		F10 to F12
	(RDY)	Operation ready output	A signal is issued if preparation for inverter operation is completed.		
	(SWM2)	Motor 2 switching	The motor swithing signal (M2/M1) is input and the ON signal is output when the motor 2 is selected.		
	(TRY)	Retry in action	The signal is output during an active retry.		H04, H05
	(OH)	Heat sink overheat early warning	An early warning signal is issued before the heat sink trips due to overheat.		
	(FAR2)	Frequency arrival 2	The signal is output when the time set in E29 elapses after the frequency arrival signal (FAR) is output.		E29
	(IOL2)	Inverter output limit	If more than 20 ms elapse while one of the following operations is operating: current limiter for the inverter, automatic deceleration operation or torque limiter.		$\begin{array}{\|l\|l} \hline F 41 \text { to F44 } \\ \text { H69 } \end{array}$
	(LIFE)	Lifetime alarm	Outputs alarm signal according to the preset lifetime level.		H42, $\mathrm{H} 43,198$
	(REF OFF)	Command loss detection	A loss of the frequency command is detected.		E65
	(OLP)	Overload preventive control	The signal is output when the overload control is activated.		H70
	(ID)	Current detection	The signal is output when a current larger than the set value has been detected for the timer-set time.		E34, E35
	(ID2)	Current detection 2	The signal is output when a current larger than the set value 2 has been detected for the timer-set time.		E37, E38
	(PID-ALM)	PID alarm output	An absolute value alarm or deviation alarm under PID control is issued as a signal.		J11 to J13
	(BRKS)	Brake signal	The signal for enabling or releasing the brake is output.		J68 to J72
	(ALM)	Alarm relay output (for any fauit)	An alarm relay output (for any fault) signal is issued as a transistor output signal.		
	CMY	Transistor output common	Common terminal for transistor output	The terminal is isolated from terminals 11 and CM .	
	30A,30B,30C	Alarm relay output (for any fault)	- A no-voltage contact signal (1c) is issued when the inverter is stopped due to an alarm. - Multi-purpose relay output; signals similar to above-mentioned signals Y1 to Y2 can be selected. - An alarm output is issued upon either excitation or no excitation according to selection.	Contact capacity: 250V AC, 0.3A, $\cos \phi=0.3,+48 \mathrm{~V}$ DC, 0.5 A	E27
	-	RJ-45 connector for connection of keypad	One of the following protocols can be selected. - Protocol exclusively for keypad (default selection) - Modbus RTU - Fuji's special inverter protocol - SX protocol for PC loader	Power (+5 V) is supplied to the keypad.	$\begin{aligned} & \hline \begin{array}{l} \mathrm{H} 30 \\ \text { y01 to y20 } \\ \text { y98,y99 } \end{array} \end{aligned}$

Terminal Functions

- Terminal Arrangement

-Main circuit terminals

Power source	Applied motor [kW]	Inverter type	Fig.
Threephase 200V	0.1	FRN0.1E1S-2A	Fig. A
	0.2	FRN0.2E1S-2A	
	0.4	FRN0.4E1S-2A	
	0.75	FRN0.75E1S-2A	
	1.5	FRN1.5E1S-2A	Fig. B
	2.2	FRN2.2E1S-2A	
	3.7	FRN3.7E1S-2A	
	5.5	FRN5.5E1S-2A	Fig. C
	7.5	FRN7.5E1S-2A	
	11	FRN11E1S-2A	
	15	FRN15E1S-2A	
Threephase 400V	0.4	FRN0.4E1S-4A	Fig. B
	0.75	FRN0.75E1S-4A	
	1.5	FRN1.5E1S-4A	
	2.2	FRN2.2E1S-4A	
	3.7	FRN3.7E1S-4A	
	5.5	FRN5.5E1S-4A	Fig. C
	7.5	FRN7.5E1S-4A	
	11	FRN11E1S-4A	
	15	FRN15E1S-4A	
Singlephase 200V	0.1	FRN0.1E1S-7A	Fig. D
	0.2	FRN0.2E1S-7A	
	0.4	FRN0.4E1S-7A	
	0.75	FRN0.75E1S-7A	
	1.5	FRN1.5E1S-7A	Fig. E
	2.2	FRN2.2E1S-7A	

Fig. A

Fig. B

Fig. C

Fig. D

Fig. E

-Control circuit terminals (common to all the inverter models)

CMY	Y1	Y2	C1	11	FM	CM	X1	X2	X3	X4	X5

11	12	13	CM	FWD	REV

Protective Functions	Description			LED indication	Alarm output (30A, B, C) Note)	Related function code
Overcurrent protection	The inverter is stopped for protection against overcurrent.		During acceleration	71	\bigcirc	
Short circuit protection	The inverter is stopped for protection against overcurrent caused by a short circuit in the output circuit.		During deceleration	-iin		
Grounding fault protection	The inverter is stopped upon start-up for protection against overcurrent caused by a grounding fault in the output circuit. If the power supply is turned on with the grounding fault, the inverter and the controlled equipment may not be protected.		During constant speed operation	010		
Overvoltage protection	An excessive voltage (3-phase and Single-phase 200 V series: 400 V DC, 3 -phase 400 V series: 800 V DC) in the $D C$ link circuit is detected and the inverter is stopped. If an excessive voltage is applied by mistake, the protection cannot be guaranteed.		During acceleration During deceleration During constant speed operation		\bigcirc	
Undervoltage protection	The voltage drop (3-phase 200V series: 200 V DC, 3 -phase 400 V series: 400 V DC) in the DC link circuit is detected to stop the inverter. However, when "F14: 3, 4 or 5 " is selected, an alarm is not issued even upon a voltage drop in the DC link circuit.			Lí	\triangle	
Input phase loss protection	The input phase loss is detected to shut off the inverter output. This function protects the inverter from being damaged by adding extreme stress caused by a power phase loss or imbalance between phases. When the load to be connected is small or DC REACTOR is connected a phase loss is not detected.			10	\bigcirc	
Output phase loss protection	Detects breaks in inverter output wiring at the start of operation and during running, to shut off the inverter output.			OPL	0	H98
Overheating protection	Stops the inverter output upon detecting excess heat sink temperature in case of cooling fan failure or overload.			口H:	\bigcirc	H43, H98
	Discharging and inverter operation are stopped due to overheating of an external braking resistor. * Function codes must be set corresponding to the braking resistor.			-	\bigcirc	
Overload protection	The temperature inside the IGBT is calculated from the detection of output current and internal temperature, to shut off the inverter output.			BLi	\bigcirc	
External alarm input	With the digital input signal (THR) opened, the inverter is stopped with an alarm.			DH	\bigcirc	$\begin{aligned} & \text { E01 to E05 } \\ & \text { E98, E99 } \end{aligned}$
Electronic	The inverter is stopped with an electronic thermal function set to protect the motor.				O	F10,A06
	- The standard motor is protected at all the frequencies. - The inverter motor is protected at all the frequencies. *The operation level and thermal time constant can be set.			Dこ		F11,F12,A07,A08
O PTC thermistor	A PTC thermistor input stops the inverter to protect the motor.			1744	O	H26, H27
응	\bullet The PTC thermistor is connected between terminals C1 and 11 to set switches and function codes on the contro PC board.					
$\sum \begin{aligned} & \text { Overload early } \\ & \text { warning }\end{aligned}$	Warning signal is output at the predetermined level before stopping the inverter with the electronic thermal function to protect the motor.			-	-	E34,E35
Stall prevention	This is protected when the instantaneous overcurrent limit works.			-	-	H12
	- Instantaneous overcurrent limit: Operates when the inverter output current goes beyond the instantaneous overcurrent limiting level, and avoids tripping (during acceleration and constant speed operation).					
Alarm relay output (for any fault)	The relay signal is output when the inverter stops upon an alarm. <Alarm reset> The key or digital input signal (RST) is used to reset the alarm stop state. <Storage of alarm history and detailed data> Up to the last 4 alarms can be stored and displayed.			-	0	$\begin{aligned} & \text { E20,E21,E27 } \\ & \text { E01 to E05 } \\ & \text { E98,E99 } \end{aligned}$
Memory error	Data is checked upon power-on and data writing to detect any fault in the memory and to stop the inverter if any.			Er i	0	
Keypad communication error	The keypad (standard) or multi-function keypad (optional) is used to delect a communication fault between the keypad and inverter main body during operation and to stop the inverter			Ere	\bigcirc	F02
CPU error	Detects a CPU error or LSI error caused by noise. \square			Er3	0	
Opition communication error	When each option card is used, a fault of communication with the inverter main body is detected to stop the inverter.			$E r 4$	-	
Option error	When each option card is used, the option card detects a fault to stop the inverter.			ErS	-	
Operation error	STOP key priority:	Pressing the (siop key on the keypad or entering the digital input signal will forcibly decelerate and stop the motor even if the operation command through signal input or communication is selected.		Erb	0	H96
	Start check:	Starl check: If the operation command is entered in the following cases, E_{r} - will be displayed on the LED monitor to prohibit operation. - Power-on - Alarm reset (key ON or alarm (error) reset [RST] is reset.) - The link operation selection "LE" is used to switch operation.				
Tuning error	When tuning failure, interruption, or any fault as a result of turning is detected while tuning for motor constant.			Er 7	0	P04
RS-485 communication error	When the connection port of the keypad connected via RS485 communication port to detect a communication error, the inverter is stopped and displays an error.			Erg	\bigcirc	
Datasave eroro upon Undenoliage	When the undervoltage protection works, an error is displayed if data cannot be stored.			Erf	\bigcirc	
RS-485 communication error (optional)	When an optional RS-485 communication card is used to configure the network, a fault of communication with the inverter main body is detected to stop the inverter.			Erp	\bigcirc	
	When the inverter is tripped and stopped, this function automatically resets the tripping state and restarts operation. The number of retries and the length of wait before resetting can be set.)			-	-	H04,H05
Surge protection	The inverter is protected against surge voltage intruding between the main circuit power line and ground.			-	-	
Command loss detection	A loss (broken wire, etc.) of the frequency command is detected to output an alarm and continue operation at the presef frequency (set at a ratio to the frequency before detection).			-	-	E65
PG disconnection	An error displays when the signal line for PG is disconnected while the PG feedback card is installed.			9	0	
Miomentary power failure protection	- A protective function (inverter stoppage) is activated upon a momentary power failure for 15 msec or longer. - If restart upon momentary power failure is selected, the inverter restarts upon recovery of the voltage within the set time.			-	-	$\begin{aligned} & \text { F14 } \\ & \text { H13 to H16 } \end{aligned}$
Overload avoidance control	The inverter output frequency is reduced to avoid tripping before heat sink overheating or tripping due to an overload (alarm indication: BH i or BL Li .			-	-	H70
Hardware error	The inverter is stopped when poor connection between the control board and power source board or interface board, or short-circuit between terminals between 13 and 11 is detected.			ErH	\bigcirc	
Simulation error	Simulated alarm is output to check the fault sequence.			Err	\bigcirc	H45

Note: The item indicated with Δ in the alarm output (30A, B, C) column may not be issued according to some function code settings.

Function Settings

Function Settings
OF codes: Fundamental Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \text { Data } \\ \text { copy } \end{gathered}$	Default setting
FOO	Data Protection	0 : Disable data protection and Disable digital frequency ref. protection 1 : Enable data protection and Disable digital frequency ref. protection 2 : Disable data protection and Enable digital frequency ref. protection 3 : Enable data protection and Enable digital frequency ref. protection	-	-	Y	0
FOi	Frequency Command 1	0 : $⿴ 囗$ keys on keypad 1 : Voltage input to terminal [12] (0 to 10 VDC) 2 : Current input to terminal [C1] (4 to 20 mADC) 3 : Sum of voltage and current inputs to terminals [12] and [C1] 5 : Voltage input to terminal [V2] (0 to 10 VDC) 7 : Terminal command (UP) / (DOWN) control 11 : DI option card 12 : PG/SY option card	-	-	Y	0
FOD	Operation Method	0 : (RUN) /(STOP) keys on keypad (Motor rotational direction specified by terminals [FWD] / [REV]) 1 : Terminal command (FWD) or (REV) 2 : (RUN) /(STOP)keys on keypad (forward) 3 : (RUN) /(STOP)keys on keypad (reverse)	-	-	Y	2
F03	Maximum Frequency	25.0 to 400.0 Hz	0.1	Hz	Y	60.0
F04	Base Frequency	25.0 to 400.0 Hz	0.1	Hz	Y	50.0
F05	Rated Voltage at Base Frequency	0 : Output a voltage in proportion to input voltage 80 to 240 V : Output a voltage AVR-controlled (for 200 V series) 160 to 500 V : Output a voltage AVR-controlled (for 400 V series)	1	V	Y2	$\begin{aligned} & 200 \\ & 400 \\ & \hline \end{aligned}$
F06	Maximum Output Voltage	80 to 240 V : Output a voltage AVR-controlled (for 200 V series) 160 to 500 V : Output a voltage AVR-controlled (for 400 V series)	1	V	Y2	$\begin{aligned} & 200 \\ & 400 \\ & \hline \end{aligned}$
FO7	Acceleration Time 1	" 0.00 to 3600 s Note: Entering 0.00 cancels the acceleration time, requiring external soft-start."	0.01	s	Y	6.00
FOB	Deceleration Time 1	" 0.00 to 3600 s Note: Entering 0.00 cancels the acceleration time, recuiring external sof-start."	0.01	s	Y	6.00
F09	Torque Boost	" 0.0 to 20.0 \% (percentage with respect to F05: Rated voltage at Base frequency) Note: This setting is effective when $\mathrm{F} 37=0,1,3$, or 4. ."	0.1	\%	Y	Depending on capacity
F is	Electronic Thermal Overload Protection for Motor (Select motor characteristics)	1 : For general-purpose motors with shaft driven fan 2 : For inverter-driven motor,non-ventilated motors or motors with forced-cooling fan	-	-	Y	1
Fit	(Overload detection level)	"0.00: Disable 1 to 135% of the rated current (aliowable continuous drive current) of the motor"	0.01	A	Y1Y2	10\%\% oithe motorated arent
Fiz	(Thermal time constant)	0.5 to 75.0 min	0.1	min	Y	5.0
F 14	Restart Mode after Momentary Power Failure	0 : Disable restart (Trip immediately) 1 : Disable restart (Trip after a recovery from power failure) 4 : Enable restart (Restart at the frequency at which the pover failure occurred, for general loads) 5 : Enable restart (Restart at the starting frequency, for low-inertia load)	-	-	Y	1
Fis	Frequency Limiter (High)	0.0 to 400.0 Hz	0.1	Hz	Y	70.0
Fi5	(Low)	0.0 to 400.0 Hz	0.1	Hz	Y	0.0
F is	Bias (Frequency command 1)	-	0.01	\%	Y	0.00
$F 20$	DC (Braking starting frequency)	0.0 to 60.0 Hz	0.1	Hz	Y	0.0
FE	Braking (Braking level)	0 to 100%	1	\%	Y	0
F22	(Braking time)	"0.00 : Disable 0.01 to 30.00 s "	0.01	s	Y	0.00
F23	Starting Frequency	0.1 to 60.0 Hz	0.1	Hz	Y	0.5
F24	(Holding time)	0.01 to 10.00 s	0.01	s	Y	0.00
F25	Stop Frequency	0.1 to 60.0 Hz	0.1	Hz	Y	0.2
F25	Motor Sound (Carrier frequency)	0 to 15 kHz	1	kHz	Y	2
$F 27$	(Tone)	0 : Level 0 (Inactive) 1 : Level 1 2 : Level 2 3 : Level 3	-	-	Y	0
F29	Analog Output [FM] (Mode selection)	0 : Output in voltage (0 to 10 VDC) [FMA] 2 : Output in pulse (0 to $6000 \mathrm{p} / \mathrm{s}$) [FMP]	-	-	Y	0
F30	(Voltage adjust)	0 to 300%	1	\%	Y	100
F3i	(Function)	Select a function to be monitored from the followings. 0 : Output frequency 1 (before slip compensation) 1 : Output frequency2 (after slip compensation) 2 : Output current 3 : Output voltage 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback value(PV) 8 : PG feedback value 9 : DC link bus voltage 10 : Universal AO 13 : Motor output 14 : Test analog output 15 : PID process command (SV) 16 : PID process output (MV)	-	-	Y	0
F33	Pulse Output [FM] (Pulse rate)	25 to $6000 \mathrm{p} / \mathrm{s}$ (Pulse rate at 100% output)	1	p / s	Y	1440
F37	Load Selection/ Auto Torque Boost / Auto Energy Saving Operation	0 : Variable torque load 1 : Constant torque load 2 : Auto-torque boost 3 : Auto-energy saving operation (Variable torque load during ACC/DEC.) 4 : Auto-energy saving operation (Constant torque load during ACC/DEC.) 5 : Auto-energy saving operation (Auto-torque boost during ACC/DEC.)	-	-	Y	1
F39	Stop Frequency (Holding Time)	0.00 to 10.00 s	0.01	s	Y	0.00
F40	Torque (Limiting Level for driving)	"20 to 200%; 999999 : Disable "	1	\%	Y	999
F4:	Limiter 1 (Limiting Level for braking)	"20 to 200%; 999999 : Disable "	1	\%	Y	999
F4?	Select Control Mode 1	0 : Disable (V/f operation; Slip compensation is Inactive) 1 : Enable (dynamic torque vector operation) 2 : Enable (V/f operation; Slip compensation is active) 3 : Enable (V/f operation with PG interface) 4 : Enable (dynamic torque vector operation with PG interface)	-	-	Y	0

F codes: Fundamental Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \text { Data } \\ \text { copy }{ }^{2} \end{gathered}$	Default setting
F43	Current Limiter (Mode selection)	0 : Disable (No current limiter works.) 1 : Enable at constant speed (Disabled during acceleration and deceleration) 2 : Enable during acceleration and at constant speed	-	-	Y	0
F44	(Level)	20 to 200% (The data is interpreted as the rated output current of the inverter for 100\%.)	1	\%	Y	200
F50	Electronic Thermal (Discharging capability) Overload Protection for braking resistor (Allowable average loss)	$\begin{aligned} & 0 \text { to } 900 \mathrm{~kW} \text {; } 999 \\ & 999 \text { : Disable } \end{aligned}$	1	kWs	Y	999
F5i		" $0.000 ; 0.001$ to 50.000 kW 0.000 : Applied for built-in braking resistor"	0.001	kW	Y	0.000

OE codes: Extension Terminal Functions

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
(Example) If the setting range is from -200.00 to 200.00 , the incremental unit is as follows:
" 1 for -200 to $-100, ~ " 0.1 " ~ f o r ~$
-99.9
$-10.0, ~ " 0.01 " ~ f o r ~$
-9.99
$-0.01, ~ " 0.01 " ~ f o r ~$
0.00
to 99.99,
"1" for -200 to -100, " 0.1 " for -99.9
and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally
Y1: Will not be copied if the rated capacity differs from the source inverter.
Y2: Will not be copied if the rated input voltage differs from the source inverter. N : Will not be copied.
*3 Reserved for the maker. Do not set any data
<Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with \bigcirc keys and then save/validate it with key), : Possible (Change and validate data with keys and then save it with key)

Functions Settings

Functions Settings
OE codes: Extension Terminal Functions

E codes: Extension Terminal Functions

C codes: Control Functions of Frequency

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \hline \text { Data } \\ \text { copy }{ }^{2} 2 \\ \hline \end{gathered}$	Default setting
[0]	Jump Frequency 1	0.0 to 400.0 Hz	0.1	Hz	Y	0.00
[02	2				Y	0.00
[03	3				Y	0.00
C04	(Hysteresis)	0.0 to 30.0 Hz	0.1	Hz	Y	3.0
[05	Multi-Frequency 1	0.00 to 400.00 Hz	0.01	Hz	Y	0.00
C06	2				Y	0.00
[07	3				Y	0.00
[08	4				Y	0.00
[09	5				Y	0.00
[in	6				Y	0.00
[il	7				Y	0.00
[ic	8				Y	0.00
$[13$	9				Y	0.00
[14	10				Y	0.00
-15	11				Y	0.00
[15	12				Y	0.00
[17	13				Y	0.00
[18	14				Y	0.00
[i9	15				Y	0.00
[2]	Jogging Frequency	0.00 to 400.00 Hz	0.01	Hz	Y	0.00
[2]	Timer Operation (Mode selection)	0 : Disable	-	-	Y	0
530	Frequency Command 2	0 : © / keys on keypad 1: Voltage input to terminal [12] (0 to 10 VDC) 2 : Current input to terminal [C1] (4 to 20 mA DC) 3 : Sum of voltage and current inputs to terminals [12] and [C1] 5 : Voltage input to terminal [V2] (0 to 10 VDC) 7: Terminal command (UP) / (DOWN) control 11: DI option card 12 : PG/SY option card	${ }^{-}$	${ }^{-}$	Y	2
[3i	Analog Input Adjustment (offset)	-5.0 to 5.0 \%	0.1	\%	Y	0.0
[32	for [12] (Gain)	0.00 to 200.00% *	0.01	\%	Y	100.0
$[33$	(Filter time constant)	0.00 to 5.00 s	0.01	s	Y	0.05
$[34$	(Gain base point)	0.00 to 100.00% *	0.01	\%	Y	100.0
$[35$	(Polarity)	0 : bipolar 1 : unipolar	-	\%	Y	1
$[36$	Analog Input Adjustment (offset)	-5.0 to 5.0 \%	0.1	\%	Y	0.0
$[37$	for [C1] (Gain)	0.00 to 200.00 \% *	0.01	\%	Y	100.0
$[38$	(Filter time constant)	0.00 to 5.00 s	0.01	s	Y	0.05
$[39$	(Gain base point)	0.00 to 100.00% *	0.01	\%	Y	100.0
[4i	Analog Input Adjustment (offset)	-5.0 to 5.0 \%	0.1	\%	Y	0.0
$[42$	for [V2] (Gain)	0.00 to 200.00% *	0.01	\%	Y	100.0
$[43$	(Filter time constant)	0.00 to 5.00 s	0.01	s	Y	0.05
$[44$	(Gain base point)	0.00 to 100.00 \% *1	0.01	\%	Y	100.0
550	Bias (Frequency command 1) (Bias base point)	0.00 to 100.00 \% *1	0.01	\%	Y	0.00
C5	Bias (PID command 1) (Bias value)	-100.00 to 100.00% *	0.01	\%	Y	0.00
[52	(Bias base point)	0.00 to 100.00 \% *	0.01	\%	Y	0.00
[53	Selecion of liomallwese Opeation (Frequency command 1)	0 : Normal operation 1 : Inverse operation	-	-	Y	0

When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00 , the incremental unit is as follows: ${ }^{2} 1$ " for -200 to $-100, ~ " 0.1$ " for -99.9 to $-10.0, ~ " 0.01 "$ for -9.99 to $-0.01, ~ " 0.01 "$ for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y : Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter
Y2: Will not be copied if the rated input voltage differs from the source inverter.
N : Will not be copied.
*3 Reserved for the maker. Do not set any data.
*4 Use these functions by connection with the multi-tasking keypad (optional). <Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with keys and then save/validate it with key) . Possible (Change and validate diten keys and then save it with (key)

Functions Settings

Functions Settings

OP codes: Motor Parameters

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copy }^{* 2} \end{array}$	Default setting
PD i	Motor $\begin{array}{r}\text { (No. of poles) } \\ \text { (Rated capacity) } \\ \\ \text { (Rated current) }\end{array}$	2 to 22 poles	2	Pole	Y1Y2	4
POL		0.01 to 30.00 kW (where, the data of function code P99 is 0, 3, or 4.)	0.01	kW	Y1Y2	Nominal rated capacity of standard motor
		0.01 to 30.00 HP (where, the data of function code P99 is 1.)	0.01	HP		
903		0.00 to 100.0 A	0.01	A	Y1Y2	
P04		0 : Disable 1 : Enable (Tune \%R1 and \%X while the motor is stopped.) 2 : Enable (Tune $\% R 1$ and $\% \mathrm{X}$ while the motor is stopped, and no-load current while running.)	-	-	N	0
905	(ON-Line tuning)	$\begin{aligned} & 0 \text { : Disable } \\ & 1 \text { : Enable } \end{aligned}$	-	-	Y	0
P06	(No-load current)	0.00 to 50.00 A	0.01	A	Y1Y2	
P07	(\%R1)	0.00 to 50.00 \%	0.01	\%	Y1Y2	Preidareniof filis
P08	(\%X)	0.00 to 50.00 \%	0.01	\%	Y1Y2	Rrailarentofilis
P09	(Slip compensation gain(driving))	0.0 to 200.0 \%	0.01	\%	Y	100.0
p in	(Slip compensation response time)	0.00 to 10.00 s	0.01	s	Y1Y2	0.50
pil	(Slip compensation gain(braking))	0.0 to 200.0 \%	0.01	\%	Y	100.0
P iL	(Rated slip frequency)	0.00 to 15.00 Hz	0.01	Hz	Y1Y2	
999	Motor Selection	0 : Characteristics of motor 0(Fuji standard motors, 8 -series) 1 : Characteristics of motor 1 (HP-rated motors) 3 : Characteristics of motor 3(Fuji standard motors, 6-series) 4 : Other motors	-	-	Y1Y2	0

OH codes: High Performance Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copy }{ }^{* 2} \end{array}$	Default setting
403	Data Initialization	0 : Disable initialization 1 : Initialize all function code data to the factory defauits 2 : Initialize motor parameters (Motor 1) 3 : Initialize motor parameters (Motor 2)	-	-	N	0
404	Auto-reset (Times)	0 : Disable, 1 to 10 times	1	Times	Y	0
405	(Reset interval)	0.5 to 20.0 s	0.1	s	Y	5.0
405	Cooling Fan ON/OFF Control	0 : Disable (Always in operation) 1 : Enable (ON/OFF controliable)	-	-	Y	0
407	Acceleration/Deceleration Pattern	0 : Linear 1 : S-curve (Weak) 2 : S-curve (Strong) 3 : Curvilinear	-	-	Y	0
408	Limiting the direction of the motor rotation	0 : Disable 1 : Enable (Reverse rotation inhibited) 2 : Enable (Forward rotation inhibited)	-	-	Y	0
409	Starting mode (Auto-search for idiling motor speed)	0 : Disable 1 : Enable (At restari mode after momentary Power Failure) 2: Enable (At restart mode after momentary Power Failure and at normal start)	-	-	Y	0
Hil	Deceleration Mode	0 : Normal deceleration 1 : Coast -to-stop	-	-	Y	0
Hiz	Instantaneous Overcurrent Limiting (Mode selection)	0 : Disable 1 : Enable	-	-	Y	1
Hi3	RestartMode afer Momentar Pover Failve (Restart time)	0.1 to 10.0 s	0.1	s	Y1Y2	Depending on capacity
H 14	(Frequency fall rate)	" 0.00 : Selected deceleration time 0.01 to $100.00 \mathrm{~Hz} / \mathrm{s}, 999$: Follow the current limit command	0.01	Hz/s	Y	999
Hi5	(Allowable momentary powerefailure time)	0.0 to $30.0 \mathrm{~s}, 999$: The longest time automatically determined by the inverter	0.1	s	Y	999
H25	PTC Thermistor (Mode selection)	0 : Disable 1 : Enable (Upon detection of (PTC), the inverter immediately trips and stops with 0 H 4 displayed.)	-	-	Y	0
H27	(Level)	0.00 to 5.00 V	0.01	V	Y	1.60
H28	Droop control	-60.0 to 0.0 Hz	0.1	Hz	Y	0.0
$H 30$	Communications Link Function (Mode selection)	Frequency command Run command 0: F01/C30 Fo2 1: RS485-1 F02 2: F01/C30 RS485-1 3: RS485-1 RS485-1 4: RS485-2 F02 5: RS485-2 RS485-1 6: F01/C30 RS485-2 7: RS485-1 RS485-2 8: RS485-2 RS485-2	-	-	Y	0
Н42	Capacitance of DC Link Bus Capacitor	Indication for replacing DC link bus capacitor (0000 to FFFF: Hexadecimal)	1	-	N	-
443	Cumulative Run Time of Cooling Fan	Indication of cumulative run time of cooling fan for replacement	-	-	N	-
844	Starting times of the inverter	Indication for replacing DC link bus capacitor (0000 to FFFF: Hexadecimal)	-	-	N	-
445	Mock Alarm	0 : Disable, 1: Enable	-	-	N	0
447	Intial Capacilance of DC Link Bus Capacitor	Indication for replacing DC link bus capacitor (0000 to FFFF: Hexadecimal)	-	-	N	Setat factory shipping
448	Cumuldiv Run Time of Capacitos on the Pinted diciuit Bard	Indication for replacing capacitors on printed circuit board (0000 to FFFF: Hexadecimal). Resettable.	-	-	N	-
449	Starting Mode (Delay time)	0.0 to 10.0 s	0.1	s	Y	0.0
450	Non-linear V/f Pattern 1(Frequency)	0.0 : Cancel, 0.1 to 400.0 Hz	0.1	Hz	Y	0.0
H5 i	(Voltage)	0 to 240 V : Output a voltage AVR-controlled (for 200 V series) 0 to 500 V : Output a voltage AVR-controlled (for 400 V series)	1	V	Y2	0
452	Non-linear V/f Pattern 2(Frequency)	0.0 : Cancel, 0.1 to 400.0 Hz	0.1	Hz	Y	0.0
453	(Voltage)	0 to 240 V : Output a voltage AVR-controlled (for 200 V series) 0 to 500 V : Output a voltage AVR-controlled (for 400 V series)	1	V	Y2	0
454	ACC/DEC time (Jogging operation)	0.00 to 3600 s	0.01	s	Y	6.00
H56	Deceleration Time for Forced Stop	0.00 to 3600 s	0.01	s	Y	6.00

OH codes: High Performance Functions

Func. Code	Name	Data setting range					Min.	Unit	Data copy*2	Default setting
H6:	UP/DOWN	0 : Initial value is 0.01 Hz 1 : Initial value is last UP/DOWN command on releasing RUN command					-	-	Y	1
453		0 : Limit by F16 (Frequency Limiter: Low) and continue to run 1 : If the output frequency lowers less than the one linited by F16 (Frequency Limiter: Low), decelerates to stop the moior.					-	-	Y	0
464	(Lower limiting frequency)	$\begin{aligned} & 0.0: \text { (Depends on F16 (Frequency Limiter: Low)) } \\ & 0.1 \text { to } 60.0 \mathrm{~Hz} \end{aligned}$					0.1	Hz	Y	1.6
468	Slip compensation (Operating conditions)	0 : During Acceleration/Deceleration : Active/Active, At base frequency or above : Active 1 : During Acceleration/Deceleration : Inactive/Active, At base frequency or above : Active 2 : During Acceleration/Deceleration : Active/lnactive, At base frequency or above : Inactive 3 : During Acceleration/Deceleration : Inactive/Inactive, At base frequency or above : Inactive					-	-	Y	0
469	Automatic Deceleration (Mode selection)	0 : Disable 2 : Enable(Torque Limiter) 4 : Enable(Torque Limiter [linactive if the deceleration time exceed 3 times value of the F08 settings])					-	-	Y	0
H70	Overload Prevention Control (Frequency fill raie)	0.00 : Follow deceleration time specified by F080.01 to $100.00 \mathrm{~Hz} / \mathrm{s}, 999$: Disable					0.01	Hz/s	Y	999
H7	Deceleration Characteristics	$\begin{aligned} & 0 \text { : Disable } \\ & 1 \text { : Enable } \end{aligned}$					-	-	Y	0
475	Torque limiter(Braking) (Frequency increment limit)	0.0 to 400.0 Hz					0.1	Hz	Y	5.0
480	Gain for Suppression of Output Curent Fluctuation for Moior	0.00 to 0.40					0.01	-	Y	0.20
$\begin{array}{r} 489 \\ 1 \\ 491 \\ \hline \end{array}$	Reserved. *2	-					-	-	-	-
H94	Cumulative Run Time of Motor	Change or reset the cumulative data					-	-	N	-
H95	DC Braking (Braking response mode)	0 : Slow 1 : Quick					-	-	Y	1
495	STOP Key Priority/ Start Check Function	Item Data STOP key priority Start check function	$\begin{array}{\|c\|} \hline 0 \\ \hline \text { OFF } \\ \hline \text { OFF } \\ \hline \end{array}$	1 ON OFF	$\begin{gathered} 2 \\ \hline \text { OFF } \\ \hline \text { ON } \\ \hline \end{gathered}$	$\frac{3}{\mathrm{ON}}$ ON	-	-	Y	0
497	Clear Alarm Data	Setting H97 data to "1" clears alarm data and then returns to zero.					-	-	N	0
498	Protection/Maintenance Function (Mode selection)	0 to 31:Display data on the keypad's LED monitor in decimal format (lheach bit, "0" for disabled, "1" for enabled.) Bit0 : Lower the carrier frequency automatically Bit1 : Input phase loss Bit2 : Output phase loss Bit3 : Life judgement threshold selection of $D C$ link bus capacitor Bit4 : Judge the life of DC link bus capacitor					-	-	Y	$\begin{gathered} 19 \\ (\text { Bit } 4,1,0=1) \end{gathered}$

-A codes: Motor 2 Parameters

Func. Code	Name	Data setting range	Min.	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copy }{ }^{* 2} \\ \hline \end{array}$	Default setting
80 1	Maximum Frequency 2	25.0 to 400.0 Hz	0.1	Hz	Y	60.0
802	Base Frequency 2	25.0 to 400.0 Hz	0.1	Hz	Y	50.0
803	Rated Voltage at Base Frequency 2	0 : Output a voltage in proportion to input voltage 80 to 240 V : Output a voltage AVR-controlled (for 200 V series) 160 to 500 V : Output a voltage AVR-controlled (for 400 V series)	1	V	Y2	$\begin{aligned} & 200 \\ & 400 \\ & \hline \end{aligned}$
804	Maximum output Voltage 2	80 to 240 V : Output a voltage AVR-controlled (for 200 V series) 160 to 500 V : Output a voltage AVR-controlled (for 400 V series)	1	V	Y2	$\begin{aligned} & 200 \\ & 400 \end{aligned}$
805	Torque Boost 2	" 0.0 to 20.0 \% (percentage with respect to A03: Rated voltage at Base frequency 2) Note: This setting is effective when $\mathrm{A} 13=0,1,3$, or 4. ."	0.1	\%	Y	Depending on capacity
805	Electronic Thermal Overload Piotection for Motor 2 (Select motor characteristics)	1 : For general-purpose motors with shaft driven fan 2 : For inverter-driven motors, Non-ventilated motor or motor with forced-cooling fan	-	-	Y	1
807	(Overload detection level)	"0.00: Disable 1 to 135% of the rated current (allowable continuous drive current) of the motor"	0.01	A	Y1Y2	10\%\% ofthe motraided drent
808	(Thermal time constant)	0.5 to 75.0 min	0.1	min	Y	5.0
809	DC (Braking starting frequency)	0.0 to 60.0 Hz	0.1	Hz	Y	0.0
810	Braking 2 (Braking level)	0 to 100%	1	\%	Y	0
R 11	(Braking time)	" 0.00 : Disable 0.01 to $30.00 \mathrm{~s} "$	0.01	s	Y	0.00
号场	Starting Frequency 2	0.1 to 60.0 Hz	0.1	Hz	Y	0.5
813	Load Selection/ Auto Torque Boost / Auto Energy Saving Operation 2	0 : Variable torque load 1 : Constant torque load 2 : Auto-torque boost 3 : Auto-energy saving operation (Variable torque load during ACC/DEC.) 4 : Auto-energy saving operation (Constant torque load during ACC/DEC.) 5 : Auto-energy saving operation (Auto-torque boost during ACC/DEC.)	-	-	Y	1
814	Select Control Mode 2	0 : Disable (V/f operation; Slip compensation is Inactive) 1 : Enable (dynamic torque vector operation) 2 : Enable (V/f operation; Slip compensation is active) 3 : Enable (V/f operation with PG interface) 4 : Enable (dynamic torque vector operation with PG interface)	-	-	Y	0

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
(Example) If the setting range is from -200.00 to 200.00 , the incremental unit is as follows: 1" for -200 to -100, " 0.1 " for
and " 0.1 " for 100.0 to 200.0

Y1: Will not be copied if the rated capacity differs from the source inverter.
Y2: Will not be copied if the rated input voltage differs from the source inverter. N : Will not be copied.

Functions Settings

Functions Settings
-A codes: Motor 2 Parameters

Func. Code	Name	Data setting range	Min.	Unit	Data copy"	Default setting
815	Motor 2 $\begin{array}{c}\text { (No. of poles) } \\ \text { (Rated capacity) } \\ \\ \\ \text { (Rated current) } \\ \text { (Auto-tuning) }\end{array}$	2 to 22 poles	2	Pole	Y1Y2	4
815		001 to 30.00 kW (where, the data of function code P99 is 0,3 , or 4.)	0.01	kW	Y1Y2	Nominal rated capacity of standard motor
		0.01 to 30.00 HP (where, the data of function code P99 is 1.)	0.01	HP		
817		0.00 to 100.0 A	0.01	A	Y1Y2	
818		0 : Disable 1 : Enable (Tune \%R1 and \%X while the motor is stopped.) 2 : Enable (Tune \%R1 and \% X while the motor is stopped, and no-load current while running.)	-	-	N	0
819	(ON-Line tuning)	0 : Disable	-	-	Y	
820	(No-load current)	0.00 to 50.00 A	0.01	A	Y1Y2	Radecaraneiofipissal xadmor
R2:	(\%R1)	0.00 to 50.00 \%	0.01	\%	Y1Y2	
R22	(\%X)	0.00 to 50.00 \%	0.01	\%	Y1Y2	
823	(Slip compensation gain(driving))	0.0 to 200.0 \%	0.01	\%	Y	100.0
88.4	(Slip compensation response time)	0.00 to 10.00 s	0.01	s	Y1Y2	0.50
R23	(Slip compensation gain(braking))	0.0 to 200.0 \%	0.01	\%	Y	100.0
R25	(Rated slip frequency)	0.00 to 15.00 Hz	0.01	Hz	Y1Y2	
839	Motor 2 Selection	0 : Characteristics of motor 0(Fuji standard motors, 8 -series) 1 : Characteristics of motor 1 (HP-rated motors) 3 : Characteristics of motor 3(Fuji standard motors, 6-series) 4 : Other motors		-	Y1Y2	0
840	Slip compensation 2 (Operating conditions)	0 : During Acceleration/Deceleration : Active/Active, At base frequency or above : Active 1 : During Acceleration/Deceleration : Inactive/Active, At base frequency or above : Active 2 : During Acceleration/Deceleration : Active/lnactive, At base frequency or above : Inactive 3 : During Acceleration/Deceleration : Inactive/Inactive, At base frequency or above : Inactive		-	Y	
84:	Gain for Suppresion of Output Curent Fluctuation for Motor 2	0.00 to 0.40		-	Y	
845	Cumulative Run Time of Motor 2	Change or reset the cumulative data		-	N	
845	Starting times of the inverter 2	Monitoring use and change of cumulative starting times		-	N	

OJ codes: Application Functions

OJ codes: Application Functions

Func. Code	Name	Data setting range	Min.	Unit	Data copy" ${ }^{2}$	Default setting
470	Braking signal (Released timer)	0.0 to 5.0 s	0.1	Hz	Y	1.0
L'i	(Putting on Frequency)	0.0 to 25.0 Hz	0.1	s	Y	1.0
Li2	(Putting on timer)	0.0 to 5.0 s	0.1	s	Y	1.0
$\begin{gathered} 473 \\ \text { to } \\ \text { SO6 } \end{gathered}$	Reserved *3	-	-	-	-	-

y codes: Link Functions

Func. Code	Name	Data setting range		Min.	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copy } y^{2} \end{array}$	Default setting
401	RS485 Communication P (Station address)	1 to 255		1	-	Y	
402	(Mode selection on no response error)	0 : Immediately trip and alarm $\varepsilon r g$ 1 : Trip and alarm $\varepsilon r B$ after running for the period specified by timer y03 2 : Retry during the period specified by timer y03. If retry fails, trip and alarm $E_{r}-B$. If it succeeds, continue to run. 3 : Continue to run		-	-	Y	0
303	(Timer) (Baud rate)	0.0 to 60.0 s		0.1	s	Y	2.0
404		$\begin{array}{\|l\|} \hline 0: 2,400 \mathrm{bps} \\ 1: 4,800 \mathrm{bps} \\ 2: 9,600 \mathrm{bps} \\ 3: 19,200 \mathrm{bps} \\ 4: 38,400 \mathrm{bps} \\ \hline \end{array}$				Y	3
305	(Data length)	$\begin{aligned} & 0: 8 \text { bits } \\ & 1: 7 \text { bits } \end{aligned}$		-	-	Y	0
405	(Parity check)	0 : None(With 2 stop bits for RTU) 1 : Even parity(With 1 stop bit for RTU) 2 : Odd parity(With 1 stop bit for RTU) 3 : None(With 1 stop bit for RTU)		-	-	Y	0
407		$\begin{array}{\|l} \hline 0: 2 \text { bits } \\ 1: 1 \text { bit } \\ \hline \end{array}$		-	-	Y	0
408	(No-response error detection time)	$\begin{aligned} & \begin{array}{l} 0: \text { No detection } \\ 1 \text { to } 60 \mathrm{~s} \end{array} \\ & \hline \end{aligned}$		1	s	Y	0
409		0.00 to 1.00 s		0.01	s	Y	0.01
410	(Response interval)	0 : Modbus RTU protocol 1 : FRENIC Loader protocol (SX protocol) 2 : Fuji general-purpose inverter protocol		-	-	Y	1
91i	RS485 Communication Q (Station address) (Mode selection on no response error)	1 to 255		1	-	Y	1
$4 i 2$		0 : Immediately trip and alarm E_{r} P 1 : Trip and alarm $\varepsilon_{r} P$ after running for the period specified by timer y03 2 : Retry during the period specified by timer y03. If retry fails, trip and alarm εr ?. If it succeeds, continue to run 3 : Continue to run		-	-	Y	0
313	(Timer) (Baud rate)	0.0 to 60.0 s		0.1	s	Y	2.0
414		$0: 2,400 \mathrm{bps}$$1: 4,800 \mathrm{bps}$$2: 9,600 \mathrm{bps}$$3: 19,200 \mathrm{bps}$$4: 38,400 \mathrm{bps}$		-	-	Y	3
315	(Data length)	$\begin{aligned} & 0: 8 \text { bits } \\ & 1: 7 \text { bits } \end{aligned}$		-	-	Y	0
315	(Parity check)	$\begin{aligned} & \hline 0 \text { : None(With } 2 \text { stop bits for RTU) } \\ & 1 \text { : Even parity(With } 1 \text { stop bit for RTU) } \\ & 2 \text { : Odd parity(With } 1 \text { stop bit for RTU) } \\ & 3 \text { : None(With } 1 \text { stop bit for RTU) } \end{aligned}$		-	-	Y	0
417	(Stop bits)	$\begin{array}{\|l} \hline 0: 2 \text { bits } \\ 1: 1 \text { bit } \\ \hline \end{array}$		-	-	Y	0
418	(No-response error detection time)	$\begin{array}{\|l} \hline 0 \text { : No detection } \\ 1 \text { to } 60 \text { s } \\ \hline \end{array}$		1	s	Y	0
319	(Response interval)	0.00 to 1.00 s		0.01	s	Y	0.01
420	(Protocol selection)	0 : Modbus RTU protocol 2 : Fuji general-purpose inverter protocol		-	-	Y	0
438	Bus Link Function (Mode selection)	Frequency command 0 : Follow H30 data 1 : Via field bus option 2 : Follow H30 data 3 : Via field bus option	Run command Follow H30 data Follow H30 data Via field bus option Via field bus option	-	-	Y	0
499	Loader Link Function (Mode selection)	Frequency command 0 : Follow H30 and y98 data 1 : Via RS485 link (Loader) 2 : Follow H30 and y98 data 3 : Via RS485 link (Loader)	Run command Follow H30 and y98 data Follow H30 and y98 data Via RS485 link (Loader) Via RS485 link (Loader)	-	-	N	0

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
"1" for -200 to $-100, ~ " 0.1$ " for -99.9 to $-10.0, ~ " 0.01$ " for -9.99 to -0.01 , " 0.01 " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.
Y2: Will not be copied if the rated input voltage differs from the source inverter. N : Will not be copied.
*3 Reserved for the maker. Do not set any data.
<Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with \triangle keys and then save/validate it with keys and then save it with key)

Peripheral Equipment Connection Diagrams

Options

[Standard type] (DB $\square \square \square-2)$ (DB $\square \square \square-4$) [10\% ED type] (DB $\square \square \square-2 C)$ (DB $\square \square \square-4 C)$

Fig. A Fig. B

$\square \rightarrow+$

Braking resistor type	Power supply voltage	Inverter type	Type	Qty.	$\begin{gathered} \text { Resistance } \\ {[\Omega]} \end{gathered}$	Max braking torque $[\%]$ $50[\mathrm{~Hz}]$ $60[\mathrm{~Hz}]$			Continuous braking(100\% torque conversion value)		Repetitive braking [Each cycle is less than $100[s \mathrm{~s}]$]	
							[$\mathrm{N} \cdot \mathrm{m}$]	[$\mathrm{N} \cdot \mathrm{m}$]	$\begin{gathered} \text { Discharging } \\ \text { capacity [kWs] } \end{gathered}$	Braking time [s]	$\begin{gathered} \text { Average allowable } \\ \text { loss }[\mathrm{kW}] \\ \hline \end{gathered}$	Duty cycle [\%ED]
Standard type	Threephase 200 V	FRN0.4E1S-2A	DB0.75-2	1	100		4.02	3.32	9	45	0.044	22
		FRN0.75E1S-2A					7.57	6.25	17		0.068	18
		FRN1.5E1S-2A	DB2.2-2	1			15.0	12.4	34		0.075	10
		FRN2.2E1S-2A					22.0	18.2	33	30	0.077	7
		FRN3.7E1S-2A	DB3.7-2	1	33		37.1	30.5	37	20	0.093	5
		FRN5.5E1S-2A	DB5.5-2	1	20	150	54.3	40.5	55	20	0.138	5
		FRN7.5E1S-2A	DB7.5-2	1	15		74.4	61.6	37	10	0.188	5
		FRN11E1S-2A	DB11-2	1	10		108	89.5	55		0.275	5
		FRN15E1S-2A	DB15-2	1	8.6		147	122	75		0.375	5
	Threephase 400V	FRN0.4E1S-4A	DB0.75-4	1	200	150	4.02	3.32	-	45	0.044	22
		FRN0.75E1S-4A					7.57	6.25	17		0.068	18
		FRN1.5E1S-4A	DB2.2-4	1	160		15.0	12.4	34		0.075	10
		FRN2.2E1S-4A					22.0	18.2	33	30	0.077	7
		FRN3.7E1S-4A	DB3.7-4	1	130		37.1	30.5	37	20	0.093	5
		FRN5.5E1S-4A	DB5.5-4	1	80	150	54.3	45.0	55	20	1.138	5
		FRN7 5E1S-4A	DB7.5-4	1	60		73.6	61.6	38	10	0.188	5
		FRN11E1S-4A	DB11-4	1	40		108	89.5	55		0.275	5
		FRN15E1S 4 A	DB15-4	1	34.4		147	122	75		0.375	5
	Single- phase 200 V	FRN0.4E1S-7A	DB0.75-2	1	100	150	4.02	3.32	-	45	0.044	22
		FRN0.75E1S-7A					7.57	6.25	17		0.068	18
		FRN1.5E1S-7A	DB2.2-2	1	40		15.0	12.4	34		0.075	10
		FRN2.2 1-1S-7A					22.0	18.2	33	30	0.077	7
10\%ED type	$\begin{aligned} & \text { Three- } \\ & \text { phase } \\ & 200 \mathrm{~V} \end{aligned}$	FRN0.4 1 1S-2A	DB0.75-2C	1	100	150	4.02	3.32	50	250	0.075	37
		FRNo.75E1S-2A					7.57	6.25		133		20
		FRN1.5E1S-2A	DB2.2-2C	1	40		15.0	12.4	55	73	0.110	14
		FRN2.2E1S-2A					22.0	18.2		50		10
		FRN3.7E1S-2A	DB3.7-2C	1	33		37.1	30.5	140	75	0.185	10
		FRN5.5E1S-2A	DB5.5-2C	1	20	150	54.3	40.5	55	20	0.275	10
		FRN7.5E1S-2A	DB7.5-2C	1	15		74.4	61.6	37	10	0.375	10
		FRN11E1S-2A	DB11-2C	1	10		108	89.5	55		0.55	10
		FRN15E1S-2A	DB15-2C	1	8.6		147	122	75		0.75	10
	Threephase 400V	FRNO.4E1S-4A	DB0.75-4C	1	200	150	4.02	3.32	50	250	0.75	37
		FRN0.75E1S-4A					7.57	6.25		133		20
		FRN1.5E1S-4A	DB2.2-4C	1	160		15.0	12.4	55	73	0.110	14
		FRN2.2E1S-4A					22.0	18.2		50		10
		FRN3.7E1S-4A	DB3.7-4C	1	130		37.1	30.5	140	75	0.185	10
		FRN5.5E1S-4A	DB5.5-4C	1	80		54.3	45.0	55	20	0.275	10
		FRN7.5E1S-4A	DB7.5-4C	1	60		73.5	61.6	38		0.375	10
		FRN11E1S-4A	DB11-4C	1	40		108	89.5	55	10	0.55	10
		FRN15E1S-4A	DB15-4C	1	34.4		147	122	75		0.75	10
	$\begin{aligned} & \text { Single- } \\ & \text { phase } \\ & 200 \mathrm{~V} \end{aligned}$	FRNO.4E1S-7A	DB0.75-2C	1	100	150	4.02	3.32	50	250	0.075	37
		FRN0.75E1S-7A					7.57	6.25		133		20
		FRN1.5E1S-7A	DB2.2-2C	1	40		15.0	12.4	55	73	0.110	14
		FRN2.2E1S-7A					22.0	18.2		50		10

$\begin{aligned} & \text { Power source } \\ & \text { voltage } \end{aligned}$		Type	TK80W120 2				
Threephase 200V	Resistance	Capacity [kW]	0.08				
		Resistance [Ω]	120				
	Applicable inverter		FRN0.4	FRN0.75	FRN1.5	FRN2.2	FRN3.7
			E1S-2A	E1S-2A	E1S-2A	E1S-2A	E1S-2A
	Applied motor output [kW]		0.4	0.75	1.5	2.2	3.7
	Average braking torque [\%]		150	130	100	65	45
	Allowable limits	Allowable duty cycle [\%]	15	5	5	5	5
		Continuous alowable braking time	15s	15s	10s	10s	10s
NOTE: This resistor is not applicable to three-phase 400V series and single-phase 200 V series.							

Options

DC REACTOR

Power supply voltage	Applicable motor rating [kW]	Inverter type	REACTOR type	Dimensions [mm]								Mass [kg]
				W	W1	D	D1	D2	H	Mounting hole	Terminal hole	
Threephase 200 V	0.1	FRN0.1E1S-2A	DCR2-0.2	66	56	90	72	5	94	5.2×8	M4	0.8
	0.2	FRN0.2E1S-2A										
	0.4	FRN0.4E1S-2A	DCR2-0.4	66	56	90	72	15	94	5.2×8	M4	1.0
	0.75	FRN0.75E1S-2A	DCR2-0.75	66	56	90	72	20	94	5.2×8	M4	1.4
	1.5	FRN1.5E1S-2A	DCR2-1.5	66	56	90	72	20	94	5.2×8	M4	1.6
	2.2	FRN2.2E1S-2A	DCR2-2.2	86	71	100	80	10	110	6×11	M4	1.8
	3.7	FRN3.7E1S-2A	DCR2-3.7	86	71	100	80	20	110	6×11	M4 4	2.6
	5.5	FRN5.5E1S-2A	DCR2-5.5	111	95	100	80	20	130	6×11	M5	3.6
	7.5	FRN7.5E1S-2A	DCR2-7.5	111	95	100	80	23	130	7×11	M5	3.8
	11	FRN11E1S-2A	DCR2-11	111	95	100	80	24	137	7×11	M6	4.3
	15	FRN15E1S-2A	DCR2-15	146	124	120	96	15	171	7×11	M6	5.9
Threephase 400 V	0.4	FRN0.4E1S-4A	DCR4-0.4	66	56	90	72	15	94	5.2×8	M4	1.0
	0.75	FRN0.75E1S-4A	DCR4-0.75	66	56	90	72	20	94	5.2×8	M4	1.4
	1.5	FRN1.5E1S-4A	DCR4-1.5	66	56	90	72	20	94	5.2×8	M4	1.6
	2.2	FRN2.2E1S-4A	DCR4-2.2	86	71	100	80	15	110	6×9	M4	2
	3.7	FRN3.7E1S-4A	DCR4-3.7	86	71	100	80	20	110	6x9	M4	2.6
	5.5	FRN5.5E1S-4A	DCR4-5.5	86	71	100	80	20	110	6×9	M4	2.6
	7.5	FRN7.5E1S-4A	DCR4-7.5	111	95	100	80	24	130	7×11	M5	4.2
	11	FRN11E1S-4A	DCR4-11	111	95	100	80	24	130	7×11	M5	4.3
	15	FRN15E1S-4A	DCR4-15	146	124	120	96	15	171	7×11	M5	5.9
Singlephase 200 V	0.1	FRN0.1E1S-7A	DCR2-0.2	66	56	90	72	5	94	5.2×8	M4	0.8
	0.2	FRN0.2E1S-7A	DCR2-0.4	66	56	90	72	15	94	5.2×8	M4	1.0
	0.4	FRN0.4E1S-7A	DCR2-0.75	66	56	90	72	20	94	5.2×8	M4	1.4
	0.75	FRN0.75E1S-7A	DCR2-1.5	66	56	90	72	20	94	5.2×8	M4	1.6
	1.5	FRN1.5E1S-7A	DCR2-2.2	86	71	100	80	10	110	6×11	M4	1.8
	2.2	FRN2.2E1S-7A	DCR2-3.7	86	71	100	80	20	110	6×11	M4	2.6

Devices requiring wiring

Power supply voltage	Applicable motor rating (kW)	Inverter type	MCCB, ELCB rated current (A)		Magnetic contactor (MC)			Recommended cable size ($\left.\mathrm{mm}^{2}\right)^{* 1}$						
					Input circuit		Output circuit	Main power input (L1/R, L2/S, L3/T)		Inverter output $[\mathrm{U}, \mathrm{V}, \mathrm{W}]$	DC Reactor$[\mathrm{P} 1, \mathrm{P}(+)]$	DC Reactor$[P(+), D B$	For control circuit	$\begin{array}{\|l} \text { For connection } \\ \text { with hiverter } \\ {[\boldsymbol{G}]} \end{array}$
			With DCR	Without DCR	With DCR	Without DCR		With DCR	Without DCR					
Threephase 200 V	0.1	FRN0.1E1S-2A	5		SC-05	SC-05	SC-05	2.0	2.0	2.0	2.0	2.0	$\begin{gathered} 0.75 \\ \text { to } \\ 1.25 \end{gathered}$	2.0
	0.2	FRN0.2E1S-2A						2.0	2.0	2.0	2.0	2.0		
	0.4	FRN0.4E1S-2A						2.0	2.0	2.0	2.0	2.0		
	0.75	FRN0.75E1S-2A		10				2.0	2.0	2.0	2.0	2.0		
	1.5	FRN1.5E1S-2A	10	15				2.0	2.0	2.0	2.0	2.0		
	2.2	FRN2.2E1S-2A		20				2.0	2.0	2.0	2.0	2.0		
	3.7	FRN3.7E1S-2A	20	30		SC-4-0		2.0	2.0	2.0	2.0	2.0		
	5.5	FRN5.5E1S-2A	30	50	SC-4-0	SC-5-1	SC-4-0	2.0	3.5	3.5	3.5	2.0		3.5
	7.5	FRN7.5E1S-2A	40	75	SC-5-1	SC-N1	SC-5-1	3.5	5.5	3.5	5.5	2.0		5.5
	11	FRN11E1S-2A	50	100	SC-N1	SC-N2S	SC-N1	5.5	14.0	8.0	8.0	2.0		
	15	FRN15E1S-2A	75	125	SC-N2	SC-N3	SC-N2	14.0	22.0	14.0	14.0	2.0		8.0
Threephase 400 V	0.4	FRN0.4E1S-4A	5	5	SC-05	SC-05	SC-05	2.0	2.0	2.0	2.0	2.0	$\begin{gathered} 0.75 \\ \text { to } \\ 1.25 \end{gathered}$	2.0
	0.75	FRN0.75E1S-4A						2.0	2.0	2.0	2.0	2.0		
	1.5	FRN1.5E1S-4A		10				2.0	2.0	2.0	2.0	2.0		
	2.2	FRN2.2E1S-4A		15				2.0	2.0	2.0	2.0	2.0		
	3.7	FRN3.7E1S-4A	10	20				2.0	2.0	2.0	2.0	2.0		
	5.5	FRN5.5E1S-4A	15	30				2.0	2.0	2.0	2.0	2.0		
	7.5	FRN7.5E1S-4A	20	40		SC-4-0		2.0	2.0	2.0	2.0	2.0		3.5
	11	FRN11E1S-4A	30	50	SC-4-0	SC-N1	SC-4-0	2.0	3.5	2.0	3.5	2.0		
	15	FRN15E1S-4A	40	60	SC-5-1		SC-5-1	3.5	5.5	3.5	5.5	2.0		
Singlephase 200 V	0.1	FRN0.1E1S-7A	5	5	SC-05	SC-05	SC-05	2.0	2.0	2.0	2.0	2.0	$\begin{gathered} 0.75 \\ \text { to } \\ 1.25 \end{gathered}$	2.0
	0.2	FRN0.2E1S-7A						2.0	2.0	2.0	2.0	2.0		
	0.4	FRN0.4E1S-7A		10				2.0	2.0	2.0	2.0	2.0		
	0.75	FRN0.75E1S-7A	10	15				2.0	2.0	2.0	2.0	2.0		
	1.5	FRN1.5E1S-7A	15	20				2.0	2.0	2.0	2.0	2.0		
	2.2	FRN2.2E1S-7A	20	30		SC-5-1		2.0	3.5	2.0	2.0	2.0		

[^1]
Guideline for Suppressing Harmonics

Application to "Guideline for Suppressing Harmonics by the Users Who Receive High Voltage or Special High Voltage"
Our FRENIC-Multi series are the products specified in the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage." When you enter into a new contract with an electric power company or update a contract, you are requested by the electric power company to submit an accounting statement form.

(1) Scope of regulation

In principle, the guideline applies to the customers that meet the following two conditions:

- The customer receives high voltage or special high voltage.
- The "equivalent capacity" of the converter load exceeds the standard value for the receiving voltage (50 kVA at a receiving voltage of 6.6 kV).
(2) Regulation method

The level (calculated value) of the harmonic current that flows from the customer's receiving point out to the system is subjected to the regulation. The regulation value is proportional to the contract demand. The regulation values specified in the guideline are shown in Table 1.

Table 1 Upper limits of harmonic outflow current per kW of contract demand [mA/kW]

Receiningvoltage	5th	7 th	11th	13th	17th	19th	23th	Over 25th
6.6 kV	3.5	2.5	1.6	1.3	1.0	0.90	0.76	0.70
22 kV	1.8	1.3	0.82	0.69	0.53	0.47	0.39	0.36

1. Calculation of Equivalent Capacity (Pi)

Although the equivalent capacity (Pi) is calculated using the equation of (input rated capacity) \times (conversion factor), catalog of conventional inverters do not contain input rated capacities. A description of the input rated capacity is shown below:
(1) "Inverter rated capacity" corresponding to "Pi"

- Calculate the input fundamental current 11 from the kW rating and efficiency of the load motor, as well as the efficiency of the inverter. Then, calculate the input rated capacity as shown below: Input rated capacity $=\sqrt{3} \times$ (power supply voltage) $\times l_{1} \times 1.0228 / 1000[\mathrm{kVA}]$ Where 1.0228 is the 6 -pulse converter's value obtained by (effective current) / (fundamental current).
- When a general-purpose motor or inverter motor is used, the appropriate value shown in Table 2 can be used. Select a value based on the kW rating of the motor used, irrespective of the inverter type.

Table 2 "Input rated capacities" of general-purpose inverters determined by the nominal applied motors

Naminia aplied moor $\mathrm{KW} \mid$	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	
Pi $[\mathrm{kVA}]$	200 V	0.57	0.97	1.95	2.81	4.61	6.77	9.07	13.1	17.6	21.8

(2) Values of "Ki (conversion factor)"

- Depending on whether an optional ACR (AC REACTOR) or DCR (DC REACTOR) is used, apply the appropiate conversion factor specified in the appendix to the guideline. The values of the converter factor are shownin Table 3 .

Table 3 "Conversion factors Ki" for general-purpose inverters determined by reactors

Circuitcategory	Circuit type		Conversion factor Ki	Main applications
3	Three-phase bridge 3 (capacitor smoothing)	Without a reactor	K31 $=3.4$	- General-purpose inverters - Elevators - Refrigeratiors, air conditioning systems - Other general appliances
		With a reactor (ACR)	K $32=1.8$	
		With a reactor (DCR)	K $33=1.8$	
		With reactors (ACR and DCR)	K34=1.4	

2. Calculation of Harmonic Current

(1) Value of "input fundamental current"

- Apply the appropriate value shown in Table 4 based on the kW rating of the motor, irrespective of the inverter type or whether a reactor is used. *ifthe input voltage is different, calculate the input fundamental current in inverse proportion to the voltage.

Table 4 "Input fundamental currents" of general-purpose inverters determined by the nominal applied motors

Nemeriden	bor MW \|	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5
Input	200 V	1.62	2.74	5.50	7.92	13.0	19.1	25.6	36.9	49.8	61.4
curenet $[4]$	400V	0.81	1.37	2.75	3.96	6.50	9.55	12.8	18.5	24.9	30.7
6.6 W monetred	Ie ma	49	83	167	240	394	579	776	1121	1509	1860

(2) Calculation of harmonic current

Table 5 Generated harmonic current [\%], 3-phase bridge (capacitor smoothing)

Degree	5 th	7 th	11 th	13 th	17 th	19 th	23 th	25 th
Without a reactor	65	41	8.5	7.7	4.3	3.1	2.6	1.8
With a reactor (ACR)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
With a reactor (DCR)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
With reactors (ACR and DCR)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4

- ACR: 3\%
- DCR: Accumulated energy equal to 0.08 to 0.15 ms (100% load conversion)
- Smoothing capacitor: Accumulated energy equal to 15 to 30 ms (100% load conversion)
- Load: 100\%

■ nth harmonic current [A] = Fundamental current [A] $\times \xrightarrow{\text { Generated nth harmonic current [\%] }}$
Calculate the harmonic current of each degree using the following equation:
(3) Maximum availability factor

- For a load for elevators, which provides intermittent operation, or a load with a sufficient designed motor rating, reduce the current by multiplying the equation by the "maxinum availability factor" of the load.
- The "maximum availabily factor of an appliance" means the ratio of the capacity of the harmonic generator in operation at which the availabily reaches the maximum, 10 is sioal capacity, and the capacity of the generatior in operation is an average for 30 minutes.
- In general, the maximum availability factor is calculated according to this definition, but the standard values shown in Table 6 are recommended for inverters for building equipment.
Table 6 Availability factors of inverters, etc. for building equipment (standard values)

Equipment type	Inverter capacity category	Single inverter availability factor
Air conditioning system	200 kW or less	0.55
	Over 200kW	0.60
Sanitary pump	-	0.30
Elevator	-	0.25
Refrigerator, freezer	50 kW or less	0.60
UPS (6-pulse)	200 kVA	0.60

[Correction coefficient according to contract demand level]
Since the total availability factor decreases with increase in the building scale, calculating reduced harmonics with the correction coefficient s defined in Table 7 below is permitted.
Table 7 Correction coefficient according to the building scale

| Contract demand $[\mathrm{kW}]$ | Corection coefficient β | If the contract demand is between two specified values |
| :---: | :---: | :---: | :---: | :---: |
| shown in Table 7 , calculate the value by interpolation. | | |
| 300 | 1.00 | |
| 500 | 0.90 | |
| 1000 | 0.85 | |
| 2000 | 0.80 | |

(4) Degree of harmonics to be calculated

Calculate only the " 5 th and 7th" harmonic currents

Warranty

To all our customers who purchase
 Fuji Electric FA Components \& Systems' products:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.
In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.
Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

1. Free of Charge Warranty Period and Warranty Range

1-1 Free of charge warranty period

(1) The product warranty period is "1 year from the date of purchase" or 18 months from the manufacturing date imprinted on the name place, whichever date is earlier.
(2) However, in cases where the use environment, conditions of use, use frequency and times used, eto., have an effect on product life, this warranty period may not apply.
(3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is " 6 months from the date that repairs are completed."

1-2 Warranty range

(1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.

1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
2) The breakdown was caused by the product other than the purchased or delivered Fuji's product.
3) The breakdown was caused by the product other than Fuji's product, such as the customer's equipment or software design, etc.
4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
5) The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
8) The product was not used in the manner the product was originally intended to be used.
9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
(2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
(3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

1-3. Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.
2. Exclusion of Liability for Loss of Opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.
3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm at our company's business office or our service office.

4. Transfer Rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

5. Service Contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

6. Applicable Scope of Service

The above contents shall be assumed to apply to transactions and use of this company's products within the nation of Japan. Please discuss transactions and use outside Japan separately with the local supplier where you purchased the products, or with this company.

Variation
The rich lineup of the active Fuji inverter family

Applications	Series Name (Catalog No.)	Features
General Industrial equipment	FRENIC5000G11S (MEH403 for JE) (MEH413 for EN)	High-performance, multi-function inverter (Three-phase 200V: 0.2 to 90 kW , Three-phase $400 \mathrm{~V}: 0.4$ to 630 kW) - Fuji's original dynamic torque vector control system delivers a starting torque of 200% at 0.5 Hz . - These inverters are packed with a full range of convenient functions, beginning with an auto tuning function. - Compact, fully enclosed (22kW and below), and with a wide range of variations, from 0.2 to 400 kW .
	FRENIC5000P11S (MEH403)	Fan, pump inverter (Three-phase 200V: 5.5 to 110 kW , Three-phase 400V: 5.5 to 710 kW) - Suitable for fans and pumps. - The built-in automatic energy-saving function makes energy saving operation easy. - An interactive keypad is standard-equipped for ease of operation.
	FRENIC-Eco (MEH442)	Fan, pump inverter (for variable torque load) (Three-phase 200V: 0.75 to 110 kW , Three-phase $400 \mathrm{~V}: 0.75$ to 500 kW) - Developed exclusively for controlling variable torque load like fans and pumps. - Full of new functions such as auto energy saving, PID control, life warning, and switching sequence to the commercial power supply. - Ideal for air conditioners, fans, pumps, etc. which were difificult to use with conventional general-purpose inverters because of cost or functions.
	FRENIC-Mini (MEH451 for EN)	Compact inverter (Three-phase 200V: 0.1 to 3.7 kW , Three-phase 400V: 0.4 to 3.7 kW , Single-phase 200V: 0.1 to 2.2 kW , Single-phase 100V: 0.1 to 0.75 kW) - A frequency setting device is standard-equipped, making operation simple. - Loaded with auto torque boost, current limiting, and slip compensation functions, all of which are ideal for controlling traverse conveyors. - Loaded with the functions for auto energy saving operation and PID control, which are ideal for controlling fans and pumps.
	FRENIC5000VG7S (MEH405)	High performance, vector control inverter Capacity range expanded (Three-phase 200V: 0.75 to 90 kW , Three-phase 400 V : 3.7 to 630 kW) - A high precision inverter with rapid control response and stable torque characteristics. - Abundant functions and a full range of options make this inverter ideal for a broad range of general industrial systems. - The auto tuning function makes vector control operation possible even for general-purpose motors.
	FRENIC5000MG5	Inverter with the power supply regeneration function (Three-phase 200V: 3.7 to 45 kW) - A separate converter is used, and up to 2 drive units can be connected to a single converter unit. - The power regeneration function is standard-equipped in the converter unit. - These inverters can be used for general-purpose motors.
High frequency operation	FRENIC5000H11S	High frequency inverter (Three-phase 200V: 2.2 to 18.5 kW) - Fuji's original sine wave PWM control system delivers stable operation from the low speed range to the high speed range. - Capable of handling output frequencies from 1 to 1667 Hz . - The desired V / f pattern can be set and polygonal line frequency can be set to match the motor characteristics.
Controlling machine tool	FRENIC5000MS5 (MEH391)	Machine tool spindle drive system (Three-phase 200V: 0.75 to 45 kW) - The separated converter allows you to configure a multi-axis system. - Free combinations are made possible such as torque vector/high performance vector control and dynamic braking/power regeneration. - Abundant option functions enable multitasking machining with a machine tool.

NOTE

When running general-purpose motors

- Driving a 400V general-purpose motor

When driving a 400 V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fujj's motors do not require the use of output circuit filters because of their reinforced insulation.

- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

- Vibration

When the motor is mounted to a machine resonance may be caused by the natura frequencies, including that of the machine Operation of a 2 -pole motor at 60 Hz or more may cause abnormal vibration.

* Study use of tier coupling or dampening rubber.
* It is also recommended to use the inverter jump frequency control to avoid resonance points.

- Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60 Hz or more can also result in more noise.

When running special motors

- High-speed motors

When driving a high-speed motor while setting the frequency higher than 120 Hz , test the combination with another motor to confirm the safety of highspeed motors.

- Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

- Submersible motors and pumps

These motors have a larger rated current than general-purpose motors. Select an inverte whose rated output current is greater than that of the motor.
These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal facility.

Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.
Do hot use inverters for driving motors equipped with series-connected brakes.

- Ceared motors

If the power transmission mechanism uses an oil-
lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

- Synchronous motors

It is necessary to use software suitable for this motor type. Contact Fuji for details.

- Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.
*Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

- Installation location

Use the inverter in a location with an ambient temperature range of -10 to $50^{\circ} \mathrm{C}$.
The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

- Installing a molded case circuit breaker (MCCB)
Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
- Installing a magnetic contactor (MC) in the output (secondary) circuit
If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.
- Installing a magnetic contactor (MC) in the input (primary) circuit
Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

- Protecting the motor

The electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.
If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

- Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do
not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

- Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

- Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met. Refer to "Inverter design technical document (MHT221)" for details

- Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.
We recommend connecting a DC REACTOR to the inverter.

- Megger test

When checking the insulation resistance of the inverter, use a 500 V megger and follow the instructions contained in the Instruction Manual.

Wiring

- Wiring distance of control circuit

When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20 m .

Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50 m . If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).

- Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

- Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

- Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

- Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

- Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

Fuji Electric FA Components \& Systems Co.,Ltd.

Mitsui Sumitomo Bank Ningyo-cho Bldg.,
5-7,Nihonbashi Odemma-cho,Chuo-ku,Tokyo 103-0011,Japan
Phone: +81-3-5847-8011 Fax: +81-3-5847-8172

Printed on 100% recycled paper

[^0]: 1. Use the contents of this catalog only for selecting product types and models. When using a product, read the Instruction Manual beforehand to use the product correctly.
 2. Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives. Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, and traffic control, are requested to consult the Fuji's Sales Division. Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty.
[^1]: - The frame and series of the MCCB and ELCB models vary according to the transformer capacity and so on of the equipment. Choose the optimum ones according to the catalog and technical data of the circuit breaker and others.
 - Choose the optimum rated sensitive current of the ELCB according to technical data, too. The rated currents of the MCCB and ELCB specified in this table indicate those of SA \square B/ \square and SA $\square \mathrm{R} / \square$ models.
 - Description in the above table may vary for different ambient temperatures, power supply voltages or other conditions.
 *1: Use crimp terminals equipped with insulation sheath or those equipped with an insulation tube or the like
 The cable to be used is 600 V -insulated cable with an allowable temperature of $75^{\circ} \mathrm{C}$. The ambient temperature is assumed to be $50^{\circ} \mathrm{C}$.

